
 Accelerating Module Conditioning
Local application for new Linac

Sep 24, 1992
Introduction

Conditioning the new Linac rf cavities will take hours or days for each
module. This local application is an implementation designed to automate the
procedure so that it can run unattended. The main idea is to slowly ramp the rf
peak forward power from the klystron toward a target value, as long as the
radiation remains below a threshold, taking care to watch the vacuum pressure
and the spark rate, reducing the forward power if either exceeds specified levels,
and resetting any rf system trips. The implementation of the program is the
subject of this note. The user interface is provided by the Parameter Page.

Hardware signals (klystron system 3)
Description Name Units
1. rf peak forward power A/D reading K3WG1P MW

2. rf peak forward power D/A setting " MW

3. vacuum pressure A/D reading (2) V3VP1,V3VP2 V

4. spark digital status bit reading
5. rf "on" digital status bit reading
6. rf interlocks reset digital control bit pulse
7. rf system reset digital control bit pulse
8. clock event status bits

Software parameters
Description Name Units
1. enable status/control bit for this application
2. rf peak forward power target value K3TRGP MW

3. rf peak forward power delta K3DLTP MW

4. time interval delta K3DLTT SEC

5. spark rate threshold K3SPKT %

6. vacuum pressure threshold K3VACT V

7. rf peak power back-off percent K3PPBK %

8. maximum #resets of trips K3MAXT

9. spark rate output value K3SPKR %

10. delay after back-off due to vacuum K3VACD SEC

11. maximum #sparks to compute spark rate K3MAXS

12. status bit for program state 0. Waiting for recovery.
13. control bit to clear spark-counting statistics counters

Klystron Conditioning Sep 24, 1992 page 2

Local application support
As a local application, the code is called as a Pascal procedure by a special

entry in the Data Access Table of the local station. This entry causes each local
application residing in the system Local Application Table be called by name.
The 4-character name is used to search the CODES table of programs that have
been previously downloaded by name into non-volatile memory. The first
argument of the call is a byte whose value identifies the type of call: 0:

Initialization call. Allocate and initialize static memory used during
the time the local application is enabled.
1: Termination call. Free static memory allocated by Initialization call.
2: (not used)
3: Cycle call. Process with new data in data pool.
4: Network call. Message received for this application.

The second argument is a pointer to the 12-word parameter area of the Local
Application Table entry. The first longword of this area provides storage for the
pointer to the static memory allocated during the Initialization call. The next word
is the enable Bit#, and the remaining words are used for additional parameters,
usually specified as Channel#s and Bit#s. (See the layout for this application in a
later section.) When the enable bit is set, the application is enabled. When it is
clear, the application is disabled. The system notices changes in the state of this
enable bit and schedules Initialization and Termination calls accordingly. When
there is no change in the enable bit, and the bit is set, the application receives a
Cycle call. Special logic is included that provides for automatic replacement to a
new program version as soon as it is downloaded, if the application is enabled. A
local application is downloaded into non-volatile memory but executes out of on-
board ram. A checksum is kept for the downloaded version that is verified each
time an application’s enable bit changes from a 0 to a 1 and its code is copied into
allocated ram for execution.

State flow
Local applications of the closed loop style are typically implemented with

state logic. In this case of the cavity conditioning application, there are two states:
0 and 1. When the application is first enabled, state 0 is asserted. While in state 0,
the application looks for a valid set of readings (both hardware and software)
and also for the rf system to be “on”. Constants in the program are used to assess
whether the values of the hardware and software parameters are within
“reasonable” ranges. Once these conditions are satisfied, the program switches to
state 1.

In state 1, the time delta value is used as a period over which to determine a
maximum value of the rf peak forward power readings. At the end of the time
interval, the maximum is compared with the target value to determine whether
an adjustment of the peak power delta can bring the power closer to the target

Klystron Conditioning Sep 24, 1992 page 3

value. Independent of this time delta interval, the maximum #sparks parameter
is used to form a spark period interval over which the spark rate is calculated.
The spark rate is checked against the threshold value to decide whether to back
off. Vacuum is always checked against the vacuum threshold to decide whether
to back off. And the rf “on” status is always checked to detect rf system trips.

Statistics are maintained about the relationship between sparks that occur and
the relevant Tevatron clock event signals that indicate what kind of accelerating
cycle was active. Counts of events, sparks occurring on those events, counts of
sparks that occur during which Booster batches, and a histogram of spark
occurrences throughout the supercycle. A self-clearing control bit is provided
that, when set, clears the spark counting statistics.

All software input parameters (except the maximum #trips) can be modified
during normal state 1 operation to take effect after the current time interval.
Also, the peak forward power can be changed manually by knob control even
while the conditioning program is regulating the peak power, as the changes
made by the algorithm are always applied incrementally from the current
setting.

A “state 0” status bit is provided as an output so that it can be monitored by the
alarm system to announce when the application is no longer regulating.

Logic details
The response to an rf system trip is to first back off the forward power, reset

the rf interlocks and subsequently to reset the rf system itself. Such resets of rf
trips are limited to repeat no more often than 10 seconds, a program constant.

There are two vacuum readings. The one with the worst reading is used in the
algorithm because only one vacuum pump may be required to be running, and
the reading of a pump which is off appears as “excellent” vacuum. The response
to poor vacuum compared to the vacuum threshold value is to back off the
forward power and delay for the vacuum delay time before allowing another
back-off due to vacuum. This gives the vacuum system time to approach
equilibrium under operation at a reduced peak forward power level.

The spark rate is computed over the number of 15 Hz cycles required to
accumulate the number of sparks specified by the maximum #sparks parameter.
Expressed as a percentage, it is compared against the spark threshold.

When there have been more rf system trips than that given by the maximum
#trips parameter, the application reverts to state 0. Manual recovery of the rf
system will allow a return to state 1 processing with an additional maximum

Klystron Conditioning Sep 24, 1992 page 4

#trips permitted—assuming nothing else is wrong.

The application was developed using MPW Pascal on the Macintosh to take
advantage of its support for the floating point 68881 chip, as most of the logic in
the program is based upon engineering units values. Its current 400 lines of
source code run in less than 3K bytes.

Parameters layout
The layout of the parameters area of the Local Application entry as viewed by

the Local Application Parameter Page is as follows:

E LOC APPL PARAMS 09/24/92 1711
NODE<0623> NTRY< 5>
NAME=COND CNTR=00F8
TITL"LGAL RF CAV CONDITIONING"
SVAR=00000000
ENABLE B<02A0> COND ENABLE
SPARKS B<019E> REFLECTED POWER
RFONST B<0198> RF ON IS ENABLED
RFINTLK B<015C> INTERLOCK RESET
PPWR C<0480> K3WG1P MW
VACUUM C<049E> V3VP1 V
 <0000>
RFRESET B<0325> SYSTEM RESET
EVENTS B<0230> EVENT 18
OTHERS C<0490> K3TRGP MW

The first parameter word specifies the enable Bit# that must be set to enable the
local application program to run. Setting it to a “1” enables calls to be made to
the application, beginning with the Initialization call. Setting it to a “0” schedules
a Termination call before releasing the program’s execution memory.

This application uses enable Bit#+1 for the “state 0” output bit and enable
Bit#+2 for the control bit that clears the spark counters.

The lo byte of the CNTR word is merely a diagnostic count of the number of times
the application code is called. It serves to show evidence of obvious activity
when viewing this entry on a memory page display. The hi byte of the same
word shows the elapsed time required by the last 15 Hz program invocation.

The ptr to the application’s static memory, established as a result of the standard
Pascal New procedure used for dynamic memory allocation, is stored during
Initialization call processing for use during subsequent Cycle call processing.
One can gain some diagnostic insight of the application’s activity by observing
the contents of the memory block pointed to by this address with the Memory
Dump Page application. The first 8 bytes are used for a standard memory block
header. The rest of the block can be matched with the declaration of the static
variable data structure of the application.

Klystron Conditioning Sep 24, 1992 page 5

The last 9 words are used for hardware Chan and Bit#s. The final word is a base
Chan# of the sequence of Chan#s used for the software application parameters.

 ACNAUX Functions
Acnet utility support

Mar 6, 1992

Introduction
The Acnet standard for task–task communications is widely used in accel

erator control systems at Fermilab. The Acnet task called ACNAUX is designed to
sup port a set of utility functions which can aid diagnosis of Acnet network
nodes in a standard way, as it is independent of the cpu and operating system
used by each node. Each node supports the Acnet header standard; through
ACNAUX each node supports some common diagnostic utility functions. This
note des cribes the support for ACNAUX in the Local Station nodes. The official
document of the standard is described elsewhere by Glenn Johnson.

Each function is specified by the lo byte of the first (or only) word following the
Acnet header of the request message. In some cases the hi byte of this word may
be used as a sub-function code. All functions are one-shot requests.

ACNAUX implementation
In the local station, ACNAUX is implemented by a local application called

AAUX. It uses the generic protocol support available via OpenPro to receive
notification about network messages directed to it. This same support is also
used by FTPMAN, GATE, and HUMBUG. It permits more rapid response than
would be achieved using 15 Hz polling of the message queue. Two of the
available parameter words are used to pass a ptr to the message reference block
that itself includes a ptr to the received request message. The AcReq Task calls
the local application when it receives a message destined for the local application
whose network task name is found in the protocol table, filled by OpenPro calls.

NOOP function 0
This serves as a “ping” facility. It determines if a node will respond to an

Acnet header request message. A status-only reply is returned. A Vax program
called ANPING can be run from a terminal to exercise this function. It includes
the time for the response in 10 msec resolution. A local station which is not busy
can return such a response in 4 msec, which is near the limit of the token ring
chipset that interfaces to the token ring network.

GTTASK function 4
Returns a list of the currently-connected network task names, followed by a

byte array of the associated task-id’s. The AAUX local application examines the
NETCT table contents to find this info. For each entry whose queue id is nonzero,
the task name and id is recorded. Because the format is specified in Vax normal
byte order, it is necessary to swap bytes for all words in the reply.

ACNAUX Functions Mar 6, 1992 page 2

The byte order of task names used in the local stations was designed to conform
to the notion that a task name can be a 4-byte character array. But in the acnet
system, many task names are in 6-character RAD–50 format, which also takes 4
bytes (two 3-character words). (Recall for the following argument that the token
ring hardware interface on the Vax swaps every byte, in order to make it such
that 2-byte integer words transfer between Vax and token ring stations that use a
“big-endian” architecture without software byte swapping.) To make it possible
for both the Vax and the local station to use 4-character ascii names, the bytes of
the destination task name field of an acnet header are swapped upon reception
by the ANet Task in the local station. ANet then searches for a match with the
current connected task entries in the NETCT net connection table to dispatch the
received message to the proper message queue. When a message is transmitted
by the local station, these bytes are swapped before it gets passed to the chipset
so that the Vax receives them in natural order.

As a result of this logic of preserving 4-char ascii task name communication, the
6-character RAD–50 names must be kept in byte-swapped form in the NETCT

table. Since these names are treated as magic constants by local station software,
this is easy to do. As an example, the task name ACNAUX in RAD–50 form is
$06C609A0 (ACN=06C6, AUX=09A0); but for local station software, it should be
specified as $C606A009, and it appears this way in the NETCT table entry.

Since there can be a mix of 4-character and 6-character formats, it requires some
special logic to convert the names to ascii for display. All 4-character task names
are composed of 4 capital letters in ascii. If a given task name fits this pattern,
then it may be presumed a 4-character form; otherwise, it should be assumed to
be of the 6-character RAD–50 form.

RAD–50 definition
This encoding of a restricted set of characters permits squeezing 3 characters

of information into one 16-bit word. It can be considered simply as a base-40
number system, whose coding scheme is as follows:

0 space 28 .
1–26 A–Z 29 (unused)
27 $ 30–39 0–9

To convert ‘XYZ’ into RAD–50, the result is (25*40 + 26)*40 + 27 = 41067 = $A06B.
GTTRIO function 8

Returns token ring chipset I/O error statistics. The token ring chipset main
tains an error log that is a set of nine 8-bit counters. A special command can be
issued to the chipset to interrogate these counters. An extra motivation for doing
so is provided by the fact that for some error conditions, when the error count
reaches 255, or $FF, the chipset removes itself from the network. This means that
a node on token ring should plan to read this error log on some periodic basis.
The local station software does this, using a default period of about 20 minutes,

ACNAUX Functions Mar 6, 1992 page 3

currently. The counts are accumulated into a corresponding set of 16-bit counts,
which allow monitoring the health of the network. This GTTRIO function returns
the value of these word counts, along with the time interval over which they
were accumulated. The names of the error conditions are:

Line
Each frame that is received or repeated for a valid FCS or Manchester

code violation. If one is detected, the EDI (Error Detected Indicator) bit is
set to “1” in the frame or token’s ending delimiter. If the received EDI is
“1”, this Line error count is incremented; if the EDI is a “1”, it is not
incremented.

ARI/FCI

This indicates that the up-stream node chipset is unable to set its
ARI/FCI bits in a frame it has received. (The details of this seem rather
obscure to this writer.)
Burst

The chipset has detected the absence of transitions for five half-bit
times between SDEL and EDEL.
Receive congestion

The chipset recognizes a frame addressed to its specific address, but it
has no buffer space available to receive the frame.
Lost frame

When in transmit mode, the chipset fails to receive the end of the
frame it has transmitted.
Frame copied

When in receive/repeat mode, the chipset recognizes a frame that is
addressed to its specific address, but the ARI bits are nonzero, indicating a
possible duplicate address. (The bridge currently causes many of these.)
Token

The Active Monitor detects a frame with the MONITOR COUNT bit set,
no token of frame received within a 10 msec window, or a code violation
in a starting delimiter/token sequence.
DMA parity or DMA Bus

Maybe something wrong with the token ring interface board itself.

GTPKTS function 9
Returns network message packet processing statistics to permit assessment of

a node’s network I/O activity. The time since the network statistics were cleared
is given along with a count of message packets processed either in or out. For the
local station, several resident diagnostic counters are monitored to collect these
statistics. The time period is the time since the AAUX local application was last
initialized, which would normally be at system reset time; however, if AAUX is
updated to a new version, upon download of a new version, the old version is
terminated and the new version is initialized, so the statistics will begin again.
The implementation uses the cycle counter which is a longword that begins at

ACNAUX Functions Mar 6, 1992 page 4

zero at system reset time and is incremented for every 15 Hz cycle. If a station is
running at the backup 12.5 Hz rate, this value is not corrected for it. When AAUX

is initialized, it captures the present reading of this cycle counter. To reply to a
GTPKTS function request, the current cycle counter – the earlier one is returned.

The count of packets processed is fairly involved. The local station supports
network communications with several protocols. The Classic data request/alarm
pro to col does not use an acnet header. The DZero and Accelerator protocols do
use an acnet header. Each family of protocols must be considered separately.

The Classic protocol uses SAP 18. At present, there is no message counter
accumulated for the Classic protocol messages received, so a frame counter is
monitored as an approximation. In the SAP table, a word counter is incremented
for each SAP 18 frame received. AAUX watches this counter every cycle and
notices changes in it to build a count of Classic frames received. When a message
count is added to the system logic, this code can be updated to use it.

All Acnet-header protocols use SAP 68. Each task name that is connected to the
network is recorded in the NETCT table, and a word counter is incremented for
each message that is received and dispatched by the ANet Task. So AAUX

monitors these counters for all 23 possible entries in NETCT. For each entry that is
active (queue id <> 0) the associated word counter is monitored every cycle for
evidence of counting. Increments are accumulated into the total packet count.

All messages transmitted pass through the OUTPQ network output pointer queue.
There is a word in the OUTPQ header that is incremented for every message that
has been completely transmitted. This word is monitored every cycle and any
increments noticed are accumulated into the total packet count.

All in all, the total packet count is the sum of the number of Classic frames
received (to be replaced by a message count when available), the number of
messages passed to the associated message queue for each connected network
task name, and the number of messages completely transmitted to the network
for any protocol.

Each Linac local station uses Arcnet communications for data acquisition with
the SRMs (Smart Rack Monitors), which usually number 4 or 5 on each Arcnet.
This communication protocol is Acnet-header based and is called locally “#4” to
signify it was the 4th data request protocol to be supported by the local station
system software. This network activity is not part of the token ring network
activity; therefore, even though it represents network processing activity in the
local station, it was not included in the #packets reported in reply to GTPKTS. If it
were, it would typically add 75 packets per second for a station with 4 SRMs. This
includes 1 broadcast transmitted request and 4 replies per 15 Hz cycle.

ACNAUX Functions Mar 6, 1992 page 5

Viewing the results of these functions
One program that makes use of the GTPKTS function are Vax console page

D31, which polls a large sequence of nodes and reports the total time value and
the number of network packets processed per second between polls. Any node
that does not support the GTPKTS function is sent a NOOP function instead, in
which case only an indication of the success of the reply is reported.

Another program that exercises this function is called PACKETS, accessible from a
VT100 terminal or emulator. It shows the network activity relating to 4 nodes,
with the last one initially set to ADCALC. This last one can be changed to a user
selected node name by typing “!” to get the prompt message that asks for the
node name, such as LIN611, for example. When a user-selected name is entered,
the GTTASK function is issued to request the task list, displayed in a separate box.
Each node is polled approximately every 4 seconds, and statistics are displayed
for the current packet rate, the minimum and maximum rates, and rates that are
averaged over several different time intervals.

The program that uses the GTTRIO function to list the error counters at a VT100

terminal is called TRIO. It prompts for a node name and shows the current
counts obtained via the GTTRIO function and also the time over which the
counts were accumulated. At this time, the CLEAR and NOW and set new
period are not implemented, but they could be so in the future if needed.

Alarm-based Signals
Local application
Wed, Jan 10, 1996

This ASIG local application is designed to support digital control line signals that
reflect the alarm state of analog channels. If a channel is bad, one can assert some
digital control signal that is otherwise de-asserted. One particular case like this that
has always been supported is the beam inhibit control signal. Any analog channel, or
binary status bit that is in the alarm scan may have the optional attribute of causing
the beam inhibit signal to be asserted when it is bad. For example, if a Linac RF
gradient is out of tolerance, it is desirable to automatically prevent beam from being
accelerated through the Linac, as it is not good beam anyway. This local application
supports the same service, but applied to other control lines that may be needed to
affect equipment in specific ways.

The parameters of the ASIG local application appear as follows:

E LOCAL APPS 01/10/96 1120
NODE<0614> NTRY<32>/64 H<0508>
NAME=ASIG CNTR=AD DT= 0 MS
TITL"ALARM-BASED CTRL SIGNAL "
SVAR=00000000 01/03/96 1508
ENABLE B<00AA> ASIG ENABLE
SPARE <0000>
CHAN1 C<011C> RF3HV 38.56 KV
C-BIT1 B<0191>*RF3 COMPUTR ENBL
CHAN2 C<031C> RF4HV 38.85 KV
C-BIT2 B<0391>*RF4 COMPUTR ENBL
CHAN3 C<051C> RF5HV 40.27 KV
C-BIT3 B<0591>*RF5 COMPUTR ENBL
CHAN4 C<0000>
C-BIT4 B<0000>

Up to four Channel-Bit pairs may be specified. If the Bit# of a pair is zero, that pair is
inactive. Each pair logically acts independently. If the reading of the specified analog
Channel is in alarm (in the "bad" state) then the specified control Bit# is asserted.
The actual state of "asserted" is specified by the sign bit of the Bit# parameter. In
the above example, the asserted state of each of the three specified controls lines is
zero. As long as the RF3 High Voltage reading is in alarm, for example, the RF3
Computer Enable control signal is set to a zero; otherwise, it is set to a one. (If the
reverse control signal logic had been desired, then the Bit# parameter would have
been 8191 rather than 0191.)

Beam Summing
Local application

Fri, Jun 17, 1994

For monitoring long term accumulations of raw data such as beam charge, it is
necessary to do the pulse-by-pulse summing locally, then making the accumulations
available to any host system. This note describes an implementation for this as a
local application.

Parameters layout:

ENABLE B<00C4> BSUM ENABLE

BEAM B<009F> NO BEAM STATUS

OUTADDR <2F00>

CHAN1 C<001B> BEAM ACCUM TEST

CHAN2 C<0000>

CHAN3 C<0000>

CHAN4 C<0000>

The ENABLE Bit# enables operation of the BSUM local application. The BEAM status
Bit# indicates what bit signals the presence of a scheduled beam pulse of the type
summed by this application. The “beam” state is the sign bit of this parameter. The
OUTADDR parameter is a 16-bit address in low memory where the output results are
written. This address should be in an area that is zeroed at system reset time, in
order to start the accumulations at zero and to signal a reset has occurred. (Consult
with an expert to determine an appropriate address to use.) The rest of the para
meters are analog channel#s whose readings provide the raw data to be summed. A
zero channel# is ignored, but it occupies a “slot” in the output data structure.

The data structure of the accumulated data is as follows:

sum: ARRAY[1..4] OF Integer; { 4-word sum of beam data }

cnt: ARRAY[1..2] OF Integer; { 2-word sum of beam cycles }

tot: ARRAY[1..2] OF Integer; { 2-word sum of all cycles }

(Here, an “Integer” is a 16-bit word.) For each channel specified, a “slot” of 8 words
is used starting at OUTADDR. The SSDN of the Acnet database entry for the reading
property can include this OUTADDR. For example, if the source node were node 61E,
and the base address of the data structure were 00002F00, one could then have the
following SSDN structure: 1D02/061E/0000/2F00.

Beam Summingp. 2

Upon reading this data, a host program can compute the accumulation (as a double
precision floating point value) of each signal as follows, where k=32768:

acc:= ((sum[1]*k + sum[2])*k + sum[3])*k + sum[4];

nBP:= cnt[1]*k + cnt[2];

all:= tot[1]*k + tot[2];

These values need to be referenced to the set of values obtained during the last
query by the host program, in order to get the amount of beam that has been
accumulated over the last query interval. Upon conversion to engineering units, the
data can be archived as needed. Note that this scheme works for multiple users
without conflict.

The front end keeps 15 bits of precision in each word in order to maintain positive
values that simplify the above formulas in hi-level language. (It also avoids the
word-swap problems that can result from differences with Vax data formats, since
words are automatically byte-swapped by Fermilab networking hardware.) Note
that a 60-bit long summation will never overflow in anyone’s lifetime. Also, 30 bits
of pulses at 15 Hz is more than 2 years. Site-wide power outages occur more often
than that. A reset of the front end clears the accumulation area.

The host program will zero its own version of the accumulations according to its
particular implementation. If the host program finds that the accumulation has
dropped to a lower value than it had during its previous query, it can assume that
the system has reset and restarted its accumulations. The most beam accumulation
that could have been lost would be that which occurred since the last query.
Assuming a one-minute query interval, for example, this should not be significant.
(Typical times between resets of Linac front end stations are measured in months.)

DAC0 and DAC1 Closed Loops
MR RF Local Applications

Mon, Apr 19, 1993

The two local applications DAC0 and DAC1 perform simple closed loop algorithms
needed in the Main Ring RF systems. DAC0 regulates the injection offset for the
ferrite bias supply. DAC1 regulates the high energy offset for the ferrite bias supply.

DAC0
At a certain time in the rf cycle (of length 2.5 seconds, in the case of collider

operation), about 50 µ s after the phase detector trigger time, the phase detector error
signal is sampled. If the value is more than 0.5 volts away from the nominal 0.0 volt
level, then adjust the controlling D/A by 80 mv per volt of error to correct for the
error. The adjustment is in a algebraically positive direction for a positive error.

A bit is set on the occurrence of the phase drtetector trigger signal, and the
sample and hold circuit is triggered 50 µ s after that time to measure the error signal.

DAC1
When the rf turns off each cycle, measure the change in the ferrite bias supply

current waveform. If the bias supply program is more than 2.5 volts, and if the bias
supply is on and the modulator is on, then adjust the high energy bias supply offset.
The amount of the offset is proportional to the measured change and is only to be
made if the change is greater than 0.015 volts. In terms of volts, the adjustment
should be in the opposite direction and of a value 1.3 times the measured change.
This should produce a 0.7 times compensation, so that only a few adjustments
should be needed to correct for a significant error.

Three digital input bits are used to furnish the rf “on” status, the bias supply
“on” status, and the modulator “on” status. The bias supply program is one analog
channel. The current waveform is the other one that is sampled twice to get the
change. When the rf “on” status bit goes to the “off” state, the previous (15 Hz)
cycle’s reading of the bias supply current waveform is subtracted from the present
value to get the change. As an example, if the observed change in the current wave
form is 0.040 volts, an adjustment of 0.080 volts in the D/A is needed to correct it.

Data Capture Logic
Local Application
Wed, May 26, 1993

The CAPT local application can be used to assist in data capturing based upon a set of
conditions that are indicated by Bit states. An “armed” Bit is turned off after a delay
following detection of any trip condition. The armed Bit can be used to condition data
capture via Data Access Table entries. The local applications parameters list for CAPT is
as follows:

E LOC APPL PARAMS 05/26/93 1329
NODE<0576> NTRY<10>
NAME=CAPT CNTR=0193
TITL"CAPTURE DATA WITH DELAY "
SVAR=0004A73E
ENABLE B<00BA> CAPT ENABLE
ARMED B<00BB> CAPT ARMED
DELAY C<0005> CAPDL CY
COND1 B<80BC> CAPT COND1
COND2 B<00BD> CAPT COND2
COND3 B<0000>
 <0000>
 <0000>
 <0000>
 <0000>

The enable Bit# is followed by the armed Bit#. When this bit is “1”, it is considered the
“armed” state. Data collection via Data Access Table entries can be conditioned to
execute when this bit is set. The delay Chan# reading specifies the number of 15 Hz
cycles following the detection of a trip condition during which the armed Bit should
remain set. The condition enable Bit#s are watched by the application to detect the
occurrance of a trip condition. Any of the conditions is enough to be called a trip. The
state of each Bit is indicated by the sign bit of the word. The remaining 15 bits specify
the Bit# itself. In the example shown, when Bit# 00BC is a “1”, or when Bit# 00BD is a
“0”, a trip condition has occurred. A word of 0000 means a “don’t care”. Thus, zero
should not be used for a trip condition Bit#.

When CAPT is first enabled, it turns on the armed Bit. When CAPT is disabled, it turns off
the armed Bit. When a trip is detected while in the armed state, the delay counter is set
to count down. During the countdown, any further trips are ignored.

The initial program version is 220 lines of Pascal, generating about $300 bytes of code.
The maximum number of condition Bit#s can easily be increased (up to 7).

Delayed Reset After Trip
Data Access Table gymnastics

Fri, Oct 14, 1994

The problem:
Detect a trip condition via a status bit, wait for maybe a few minutes, and

apply a reset control action to recover from the trip. This note gives a concrete
example of one method to do this via Data Access Table entries.

Solution:
Build a counter to count cycles since the start of a trip condition. Use a period

specification entry conditioned by the counter value to enable the following reset
control action, plus a clear of the counter channel in case the reset is not immediate,
in order to insure that subsequent resets cannot occur too soon.

Example:
Suppose in node 056B, operating at 10 Hz, status Bit 0198=0 indicates a trip

condition, channel 0013 is used as the counter channel, a delay of 5 minutes is
required following a trip before resetting, and pulsing Bit 011C high for one 10Hz
cycle resets a trip. (Use two non-volatile memory words at 40FF70 for constants. Set
up the counter channel as a dummy settable channel so the clear works.) The
following Data Access Table entries follow the approach outlined above:

1500 0013 0000 0000 Build cycle counter in Chan 0013 when Bit 0198 transitions

0000 8000 0198 0001 to zero. Clear counter while Bit 0198 is one.

7F00 0001 0000 0000 Enable following entries when counter value falls outside

0000 C000 0013 0BB8 range 0000–0BB8. (0BB8 = 5*60*10 cycles)

0D95 0000 0040 FF70 Pulse Bit 011C high for one cycle. (40FF70)=0401.

056B 011C 0000 0001

0D81 0000 0040 FF72 Clear counter to limit rep-rate of reset. (40FF72)=0.

056B 0013 0000 0001 (Do this in case reset doesn’t set Bit 0198 right away.)

If the reset pulse does not immediately cause Bit 0198 to become set, indicating a
non-trip condition, then the last entry insures that the reset will only be done once.
If the trip condition persists, and Bit 0198 continues to remain a zero, then the reset
pulse will be re-issued 5 minutes later, when the counter again advances past BB8. If
a reset occurs (manually) before the 5 minute timeout, the counter will be cleared.

DirectNET PLC Access
Local application

Thu, Feb 1, 1996

The vacuum controls interface for the PET project uses a Programmable Logic
Controller to do the interlocks handling and vacuum-specific logic that is required.
The IRM interfaces to the PLC via an RS-232 serial port. The basic approach is to
routinely collect analog and digital data from the PLC, then map it into the IRM's
analog and digital channels. Control actions are also output as necessary. All of this
logic is handled by a local application.

The serial I/O input supported by the system system software passes through
the Serial Input Queue (SERIQ) table. By monitoring the contents of the SERIQ, all
received characters of serial input, except the linefeed (0A) and null (00) characters
can be seen. This is enough to catch the data coming from the PLC.

The DirectNET protocol can transmit data in hex (binary) or in Ascii.
Although using Ascii requires twice the time for the data transfers, it helps to
unambiguously detect control characters that are part of the protocol. This
implementation of DirectNET support will use Ascii for that reason. The following
control codes are used by the DirectNET protocol:

ENQ 05 ETB 17
ACK 06 STX 02
NAK 15 ETX 03
SOH 01 EOT 04

DirectNET Overview

One data transaction requires a series of I/O communications between the
host computer and the slave PLC. To begin any transaction, the master sends an
inquiry 3-byte sequence of "N", "address", ENQ, where address = $20 + the PLC slave
address. The slave responds with the same sequence, with the ENQ byte replaced by
an ACK.

The master then sends a header that defines the operation. Its format is SOH,
header, ETB, LRC. The LRC stands for a one byte Longitudinal Redundancy Check
that is the exclusive OR of all the Ascii bytes within the header. The header itself
consists of the one-byte (two Ascii characters) slave address, read (30) or write (38)
character, data type character, two-byte starting address, one-byte #complete (256-
character) blocks, one-byte number of bytes in last block, and one master ID byte (0
or 1). The slave responds with an ACK character.

For a read request, the slave continues by sending the data message in the
format STX, data block, ETX, LRC. If the #characters in the data block is larger than
256, so that the #complete data blocks is nonzero, then more than one data block is
sent, with each complete data block using a ETB character in place of the ETX. Each

DirectNET PLC Access p 2

data word within a data block is in byte order, least byte first. After each complete
data block, or the last incomplete data block (of length 0–255 characters) is received
by the master, the master returns an ACK. The slave then returns an EOT. The
master finally sends an EOT. This final EOT clears the slave for future detection of
an inquiry sequence.

For a write request, the transaction sequence is the same, but the data is
transferred from the master and ACK'd by the slave. After the last data block is
ACK'd by the slave, then the master sends an EOT to end the entire transaction.

Timeouts are imposed on the successive communications of a transaction. If a
slave times out awaiting a response from a master, it will be necessary for the
master to send an EOT to clear the slave to accept a new inquiry.

The details of this communication protocol are found in the manual.

IRM serial support

The usual serial port support in an IRM is organized around lines of input
separated by a CR character. Nulls (00) and LF characters (0A) are removed from
the input stream. If more than 128 characters are received without a CR, then one is
inserted into the serial stream. By operating the DirectNET communications in
Ascii mode, this should not cause a problem, as LF and nulls and CR aren't used.
The slave sends a CR in Ascii mode. But a data block could be longer than 128
characters, so waiting for one would not be advisable. Therefore, as a first step, we
will simply monitor (at 10Hz) what is found inside the SERIQ and in this way be able
to see all characters in the stream as soon as they come in and are deposited into
the SERIQ by the serial receive interrupt code.

Serial output support is usually organized as lines, with trailing blanks
removed and CR and LF inserted. This is the usual way, but there is a separate
listype that permits serial output without such editing. We shall use the latter
listype for DirectNET output, in case the CR, LF would cause a problem for the slave
PLC. The serial baud rate for use with the DirectNET interface is 19200 baud.

Data acquisition approach

The DNET local application program is used to collect the data routinely by
sending a read transaction. The response data consists of two parts, the first for
analog and the second for digital data. The response data is then mapped into the
IRM's local analog channels and digital bytes. Between data acquisition
transactions, DNET also monitors a message queue for setting commends, either to
an analog word or a digital word. When a message is detected, a write transaction is
made in place of the next data acquisition transaction. This approach means that all
the support afforded analog channels and binary bits in the IRM system can be
preserved. The acquisition may be slow, but this is not thought to be a problem for a

DirectNET PLC Access p 3

vacuum system controls interface. With this approach, an update rate of 1Hz or
better, and a control action delay of less than one second, should be achievable.

In order to prevent other uses of the serial port for output, we may place a
flag bit in the PRNTQ header that prevents such output. A simple way to do this may
be to allow only the raw listype to work for serial output. Usual serial port output
uses the normal output logic that edits out terminal blanks and adds CR,LF.

Message queue support

A change in the system code supports use of a PLCQ message queue. When a
setting is made to a PLC-type device, a message about the setting is placed into the
message queue. (If it has not been created, it will first be created.) In this way,
there is a place for the settings that result for the Restore action following a system
reset to reside, until the time that the DNET local application is initialized and the
first data acquisition transaction completed. As DNET is initialized, it attaches to
the PLCQ message queue so it can check for any waiting messages.

Parameters

Local application DNET parameters, using example test values, are as follows:
ENABLE B 00D4 Bit# enables local application
SLAVE0001 Slave address of PLC interface
DATATYPE 0001 Data type# used for data pool acquisition
REFADDR 1001 Base reference addr for analog, digital data pool
NACHANS 0010 #chans of analog data
NDWORDS 0008 #words of digital data following analog data
MAPCHAN C 0180 Base analog Chan# for mapping to local IRM space
MAPBIT B 0180 Base binary Bit# for mapping to local IRM space

0000 (spare)
0000 (spare)

The above set of parameter values supports 16 analog channels and 8 words
(128 bits) of digital data.

Digital control scheme

Each BADDR entry is normally a memory address that should be written for
the associated status byte. But 1553 and SRM communications required specially-
coded 4-byte BADDR entries that are signaled by the use of hi byte values 80 and 81,
respectively. For the PLC support, we use a hi byte value of 82. When the usual

DirectNET PLC Access p 4

binary data scan occurs, via the "0405" entry in the data access table, such entries
are skipped. When a digital control setting is made, the data type and reference
address are found in the lower three bytes of the BADDR entry. To perform the
setting, the information must be passed to the DNET local application via the
message queue scheme described above.

DNET collects the data pool from the PLC every 4 cycles. For support by a local
application that is invoked at 10 Hz, this is the easiest approach. During the first
cycle, the enquiry message is sent. On the second cycle, the 3-byte response to the
enquiry is received, and the request header is sent. On the third cycle, the
acknowledgment to the request header is received, followed by the data that was
requested, and the ACK is sent. (If there is too much data, given the bandwidth
available, then an additional cycle or more would be required.) On the fourth cycle,
the EOT is received, and the EOT is sent to the PLC to clear it for receipt of the next
enquiry. The message queue is checked for any settings to be performed. If one is
found, then another four cycles is spent doing that write transaction. The required
data type byte, reference address word, and data word are taken from the message
queue entry, which was filled by the setting support in the system code using the
contents of the BADDR entry. Upon completion of the write transaction, a new read
transaction is performed that updates the data pool. As a result, the data pool is
updated every 0.4 seconds, but when a setting must be performed, 0.4 seconds is
taken to perform it. The maximum time between updates of the data pool is
therefore 0.8 seconds. The maximum time to perform a setting, assuming none is
already queued, is also 0.8 seconds. If a faster update rate is needed, a means of
invoking the local application in response to serial activity will be required. At first,
omitting such support is easier.

Bit-based, byte-based, and word-based digital control are supported. In any
case, however, a word-wide setting is actually performed. Bit-based toggle, set hi,
and set lo digital control types are supported. Bit-based pulse types are not
supported for this hardware; the PLC's cpu logic can be used to do it.

Analog control

Analog control is specified by a new analog control type# $19. The second
byte gives the data type, and the last two bytes give the reference addresss to be
used to effect the setting. It may be in the memory region that is part of the data
pool, in which case the PLC's cpu will have to perform the setting to the real I/O
module; or it may be in the I/O module itself. Upon successfully queuing the setting
message, the setting word of the ADATA entry for that channel is updated, even
though completely successful completion of the setting is not assured. Because knob
control could queue settings faster than they can be delivered at 0.8 sec, the local

DirectNET PLC Access p 5

application checks for successive entries in the queue referencing the same target
address (data type and reference address), and coalesces them as much as possible,
delivering only the final setting it finds waiting in the queue.

Domain Name Server Access
Obtain IPaddress given node#

Fri, Feb 23, 1994

Each station has a node# that is used in data requests to indicate where a device
resides. Historically, this node# has been part of the physical network address. But
with the use of Internet Protocols, this natural node# is less directly useful. Given a
node#, how can one determine the IP address needed to support IP communications?

Acnet developed a scheme that uses an alternate node# that is an index in a table of
IP addresses that is downloaded to each computer that supports Acnet. As a result,
each local station recognizes two node#s. One is the historically natural one, such as
0576; the other is the IP table index, such as 096F.

Until now, specifying a natural node# in a local station page application results in
non-IP communications. Use of the 09xx node# forces IP communications. In order to
obtain global access to local stations that are on different networks, especially
common on ethernet, it may be desirable to force IP communications, if possible. If
this is done, how can one derive the IP address given a natural node#? A convention
has been used for this purpose in the host support of Macintosh and Sun computers.
Rather than use the 09xx values, the natural node#s are used. The Domain Name
Server is consulted to translate from a node name such as “node0576.fnal.gov” into
an IP address.

Normal domain name resolver code operates synchronously; i.e., it returns only
after a reply is received in response to the query to the domain name server. In the
context of a local station’s real-time operation, this is inconvenient. To use DNS

access, it will be necessary to operate asynchronously and to maintain a cache of
node# vs IP addresses. If a name lookup query is sent to the name server, the frame
due to be transmitted may be discarded. When a response from the name server
arrives, the IP address can be placed into the cache, so that it will be available the
next time access to that node# is needed.

Imagine a table with entries in the following format:

node# count IP address

A nonzero node# means the entry is in use. A nonzero IP address means that an
entry in use is complete. The counter is used to time out stale entries and also time
out responses from the name server. Negative values of the counter mean that a
request has been sent to the name server, but no reply has yet been received.
Positive values mean that a countdown is in progress until the name server query is
retried. If the counters “tick” at once per second, then the maximum delay (32K

Domain Name Server Access p. 2

seconds) is about 9 hours. An IP address of zero (with nonzero node#) means that no
response has ever been received from the name server for that node#. If a time out
occurs while awaiting a response from the domain name server, and the IP address
is nonzero, then leave it the same, as the name server may only be temporarily
unavailable due to network problems. If a response from the server indicates that
the name is undefined, then clear the entry, as an IP address cannot be found for
that node#. The table can also be maintained manually, in the absence of an domain
name server, if desired.

When a node# is encountered that does not have an entry in the table, use a roving
pointer to determine where to start a search for a vacant entry for the new node#.
This insures that an entry will not be re-used too soon. In this way, one can use the
entry#, perhaps plus an offset, for the request ID in the name server query message.
The response ID will then indicate the entry whose IP address is to be updated.

This logic is implemented in a local application. Each LA is given a chance to
execute each 15 Hz cycle, which provides the opportunity to perform timeout
functions. The LA will also run, invoked by the SNAP Task, when a reply is received
for the client UDP port, which provides for updating the appropriate table entry. The
memory used for the table should be in non-volatile memory, so that the
information is not lost upon system reset. As the system code needs access to the
table also, the new IP Node Address Table (IPNAT) is system table #27. If the table is
undefined, then this feature is be supported by the system. If the LA, called DNSQ, is
not enabled, then the feature is supported, but only for node#s already in the table.
In this way, one can implement support for access to a restricted set of nodes.

How does the system code that queues a message for a network via OUTPQX get the
attention of the LA in order to carry out the job of issuing the name server query for
an unfamiliar node#? When the LA is enabled, it writes its client portId, the entry#
in the NETCT table of network and UDP port connections, into the IPNAT table
header. The system code can check this portId value to lookup the message queue ID
used for advising the LA of UDP network messages destined for its UDP port. Writing
a special message to this queue advises the LA of the new node# for which it should
send a new query. The system clears this portId word in the IPNAT header at reset
time.

How can a system be configured to use only IP communications? In the third word of
the PAGEM table is stored the “broadcast node#” used for name lookups and data
requests that are addressed to multiple nodes using multicasting. If this value is in
the UDP range of 09Fx, then we can assume the preferred use of IP communications.

IPNAT table header format

Domain Name Server Access p. 3

'IN' last limit start

portId #retries #queries

DNS IP address #waiting #active

up to 16-char suffix for DNS queries

The ‘IN’ key serves to identify a valid table. (The IP default feature can be disabled
by modifying this key.) The last word is the offset to the last entry used after
searching for an empty one to install a new one. The limit word is the size of the
table. The start word is the offset to the first entry. The portId is the index in the
NETCT table, placed here by the DNSQ local application when it is enabled. The
#retries is the count of the number of times that the LA had to repeat sending the
name request to the DNS because of no response within the time out period. The
#queries is the total number of DNS queries since reset. The IP address of the DNS is
next, followed by the #waiting word, the #entries with waiting queries, and the
#active word, the #entries actively awaiting a DNS response. A default suffix of up to
16 characters, blank fill, is appended to each node# name of the form “nodexxxx”
with xxxx as the node# in hexadecimal. At Fermilab, the suffix “.fnal.gov” is used.

In the OUTPQX routine, when the destination node# is in the appropriate range to be
a natural node#, currently 05xx, 06xx, and 07xx, and the system is configured to
default to IP communications, except for reply messages, con sult the entries in the
IPNAT table to get an IP address, and call PSNIPARP to obtain a pseudo node# 6xxx.
If no IP address is present, make a new entry for this node#, change the destination
node# to zero so that it will be discarded, and write a special message into the
message queue that is associated with the portID NETCT entry. This will invoke the
DNSQ local application, which will see the special message and send a query to the
name server for the given node#. (But it will return without waiting for a reply!)
During subsequent 15 Hz LA processing, if no response is forthcoming, it will repeat
the query. After perhaps 3 times, it will give up, setting the count word in the IPNAT

entry to retry much later. In this way, responses from the DNS will be cached in the
table.

Use of the count word for two purposes is as follows: It is divided into two bytes,
cntHi and cntLo. Three cases depend upon the cntHi value. If cntHi > 0, cntLo is
decremented each second. When it reaches zero, cntHi is decremented. If cntHi
reaches zero, the time out has occurred that repeats the query to the DNS to catch

Domain Name Server Access p. 4

up on any IP address changes for that node. In the case that cntHi is negative,
cntLo is also decremented each second. When it reaches zero, the query is retried,
and the cntHi incremented. If cntHi reaches zero, it means that no response has
been received from the DNS at all for this node#, and if the IP address is zero, the
entry should be cleared, as the node# may be bogus. If cntHi = 0, no incrementing or
decrementing is done. This allows for manual installation of table entries with
static IP addresses. This is also useful for foreign nodes where the suffix does not
apply.

The special message to be written into the message queue is as follows:

size=2 mCntOff=4

message ptr

srcOff=0 dstOff=0

pSrcNode=0 ipHdrOff=0

node# count=0 IP address = 0

new IPNAT table entry

This special message is sent via the message queue to the DNSQ local application
only when a new entry has just been placed in the IPNAT, the node# to be looked up
has been placed into the entry, and the IP address field has been cleared. The
message ptr is the address of the node# word in the new entry. The msgOff value of
4 means that the message count word is the hi word of the IP address field that has
been set to zero. The logic in UDPRecv, called by UDPRead, that decrements the
message count word to signal that a network mes sage has been processed, first
checks to see whether the message count word value is zero; if so, it does not change
it. The other four words in this special mes sage are not interpreted by UDPRead.
Use of this special message format allows a UDPRead call in the LA to get the
network replies from the DNS as well as the special mes sage from the system
notifying that a new node# needs to be looked up via the DNS. The LA identifies the
special message format by the size=2, just enough for the new node#.

 HUMBUG for Local Stations
Local application implementation

Dec 15, 1991

Yet another protocol generally supported by front end computers which make
up the accelerator control system at Fermilab is HUMBUG. It provides access to
the memory of a front end, as the data acquisition protocol does not support it.

Protocol
As implemented for the 68020-based local station front ends, two types of

message formats are supported. The first is an Absolute Dump request whose
format beyond the usual acnet header is as follows:

Word Meaning
0 1: Absolute Dump
1 #words of memory requested (1–128)
2 MSW of 32-bit address
3 LSW of 32-bit address
4 unused
5 unused

The reply message format to this request is simply the data words requested. If
the MLT bit is set in the first word of the acnet header—signifying multiple
replies—the data is returned at 15 Hz until the request is canceled. If there is a
bus error encountered, the status word in the acnet header will indicate it.

The second format is an Absolute Patch command, as follows:

Word Meaning
0 3: Absolute Patch
1 #words of memory to set (1–128)
2 MSW of 32-bit address
3 LSW of 32-bit address
4 unused
5 unused
6 ff. Array of data words to set

 This command is always a one-shot. If the message type is a REQ, rather than a
USM, a status-only reply will be sent. If there is a bus error, the acnet header
status word will carry the news.

Klystron RF Gradient Regulation
Local application for Linac Upgrade

Thu, Nov 18, 1993

Introduction
The klystron RF systems drive the accelerating cavities in the Linac

Upgrade. Due to temperature variations, the gradient in the cavities exhibits a
variation over a period of minutes or hours. This note describes a local application
that compensates for such variations to maintain more constant gradient readings.

The gradient amplitude affects the beam significantly. During beam cycles,
the gradient is reduced by beam loading. Regulation of the gradient must
concentrate on regulating beam cycles, using as a reference the nominal gradient
value used by the alarm scanning system. On no-beam cycles, when no beam is
accelerated, the program can measure the amount of beam loading by comparing
the gradient reading against the last beam cycle reading. Then, after some time has
passed without beam cycles, this beam loading estimate can be used to derive the
appropriate reference for no-beam gradient regulation.

Parameters
The “Page-E” parameters are as follows:

E LOC APPL PARAMS 11/12/93 0835

NODE<0622> NTRY<11>

NAME=KRFG CNTR=0113

TITL"KLYSTRON RF GRADIENT REG"

SVAR=00033442

ENABLE B<0090> KFRG K2 ON/OFF

NBWAIT C<0091> K2WAIT CYC

GRREAD C<0484> K2GRAD NRM

GRSET C<0422> L2MSDA V

GAIN C<0090> K2LPGN

AVGCYC <0020>

LOADCYC <0080>

After the required enable Bit# parameter, NBWAIT is the Chan# whose value
specifies the number of cycles after the last beam pulse at which time the program
switches from beam regulation into no-beam regulation.

The gradient reading and setting Chan# are next. The gradient reading is in
“normalized units,” while the gradient setting is in “volts” units.

The relationship between a change in the setting in these units that produces
a change in the reading units is about 0.25; i.e., ∆ reading ≈ 4*∆ setting. As a result,
the next parameter, the gain Chan#, should be about 0.25 to correspond to full

Klystron RF Gradient Regulation p. 2

correction. Note that significantly larger values of the gain may produce an
oscillation.

The last two parameters specify periods in 15 Hz cycles. They are not
Chan#’s, so their values must be changed via “Page-E” directly. The AVGCYC

parameter specifies for the no-beam regulation mode the number of cycles over
which readings are averaged to give a result that is compared with the expected no-
beam reference value. It is probably easier to consider this as the minimum period
between making no-beam adjustments. The LOADCYC parameter specifies the
averaging parameter that is used in the computation of beam loading. The formula
is as follows:

avgLoading:= (avgLoading*(loadCyc – 1) + loading)/loadCyc;

A new value of beam loading is measured on each no-beam cycle during the beam
regulation mode, when there has been a “recent” beam pulse. This value of loading
is combined in the above formula to produce an updated average value of beam
loading. The average is used during no-beam regulation mode to derive the no-beam
reference value for the gradient. The formula is as follows:

noBeamRef:= beamRef + avgLoading;

The beamRef is the nominal value of the gradient as used in the alarm scan.

Internal constants
Several internal constants are used by the program. To change them, one

must modify the local application program called KRFG.
minGrad = 0.75; Minimum gradient reading for regulation
maxChange = 0.01; Maximum setting adjustment made at once
maxSample = 30; #cycles period for sampling parameter values
beamLoadStart = 0.04; Initialized default value of beam loading

Adjustment limits
If a calculated new setting is made that would take the setting channel

outside of its alarm tolerance range, the setting is not performed. This serves to
keep the range of adjustment within bounds, even if the gradient readings exhibit
peculiar characteristics.

 Local Applications Table
Support for closed loops, etc.

Aug 28, 1990

A means of expansion of the VME local station system software is by the use of
local applications, which are separately-compiled procedures that are invoked by
the system during Data Access Table processing. The Local Applications Table
(LATBL) contains the entries that result in their invocation.

Invocation context
During Update Task processing of the Read Data Access Table (RDATA), one

particular entry causes the LATBL entries to be processed. This means that local
applications are invoked during updating of the datapool, likely to be positioned
either at or near the end of RDATA.

Each local application (LA) is expected to be written as a Pascal procedure, just as
are application page programs. The calling sequence is as follows:

TYPE

TrigType = (init, term, kbint, cycle, net);

ParamList = RECORD

sVarPtr: sVarPtrType;

enableBit: Integer;

params: ARRAY[1..9] OF Integer;

 END;

PROCEDURE LocalApp(trig: TrigType; VAR LAEntry: ParamList);

The first argument is the same as that used by application page programs.
(The kbint and net options may not apply.) The init call occurs the first
time that the program is invoked since being enabled. The term call occurs
when the LA is being disabled. The cycle call is the normal one given each
15 Hz cycle or whenever directed via a special Data Access Table entry.

The second argument is a ptr to a part of the LATBL entry. It points to a
structure in the table entry reserved for a ptr to the LA’s static variables and
an array of up to 10 integers, the first of which specifies the local binary Bit
used as the enable/disable control for this invocation. The other integer array
elements may be anything else required by the particular LA.

Local Applications Table Aug 28, 1990 page 2
During the init call, the LA is expected to allocate memory for its own static
variable requirements. This can be done by calling this routine:

Function Alloc(sVarSize: Longint): sVarPtrType;

This call invokes the pSOS memory allocation routine and returns a ptr to the
allocated memory. If the storage cannot be allocated, a NIL ptr is returned.

When the sVarPtr is returned by Alloc, the LA should save it in the first
longword of its ParamList structure. This is necessary because the LA is a
Pascal procedure that must be invoked multiple times during the time that its
LATBL entry is enabled. Any information that must be saved by the LA across
calls to it must be stored in this static variable space. Note that a given LA may
be invoked multiple times with different ParamList structures. An example is the
Linac rf gradient regulation that is to be done for 3 rf stations by one local station.
This will use 3 entries in LATBL but only a single entry in CODES for the gradient
regulation program (procedure).

When the term call is made, the LA should free its static variable allocation by
calling this routine:

Procedure Free(statVarPtr);

This procedure simply frees the memory allocated by Alloc.

Local Applications Table
A new system table (#14) supports local applications. An entry in this table

has the following format:

status

enable Bit#ptr to static variables other params…

 namecount

The status word is a copy of the previous enable bit reading. Comparing this
value with the current enable bit reading allows the system logic to decide what
to use for the trig argument in the call to the LA. The enable bit, when set,
signifies that the entry in LATBL is enabled. When an LA entry makes a transition
from disabled to enabled, the init call is used. The LA is expected to allocate

Local Applications Table Aug 28, 1990 page 3
during this execution, the act of disabling a local application means it will “start
over” when it is re-enabled.

The program that is to be run is identified by 4-character name. Along with the
type code of LOOP, the CODES table of downloaded separately-compiled
programs is searched for a match, and the address of the executable copy of the
program is used as the target for the call. The first time that the program is
accessed, for the init call, a checksum check is performed to insure that the
downloaded code has not been corrupted, and the program is copied into newly-
allocated dynamic memory for execution. This means that the downloadable area
is always available to receive a new version.

Downloading a new LA
When a change is to be made in a LA program, the new code is downloaded

without concern for the currently-executing code. The LA scan finds the name of
the LA and the ptr to the executing code (in on-board memory) in the CODES
table entry corresponding to that name. The process of downloading leaves this
pointer alone while the code is copied into a newly-allocated area.

When downloading is complete, the checksum is sent to be stored in the CODES
table entry, and the ptr to the downloaded code is marked (by setting its ls bit) to
show that it is a fresh copy.

LATBL table processing
When LATBL entries are scanned by the Update Task, and a fresh

downloaded copy of the code is detected, and the type of call was to be a cycle
call, the call type is altered to a term call. This gives a chance for the LA to free
any allocated static variable storage and “clean up its act” in general. After any
term call, the saved copy of the LA’s enable bit reading is cleared. This will cause
an init call to be given on the next cycle if the LA is still enabled. The checksum
will again be checked and new memory allocated for execution in on-board ram.

After all LATBL entries have been scanned, a separate scan is made over the LOOP
entries in the CODES table. For each entry which has the fresh download bit set,
the bit is cleared, the executable area is freed and its ptr cleared.

The result of the above logic is that those entries which use the program just
downloaded will be disabled and re-enabled automatically the very next cycle.
(If it is desired to prevent an alarm message from being sent, in the case that the
enable/disable status bit is being monitored, one can merely elect to use the 2X
option with that status bit, since the bit will be disabled for only one cycle.) This
means the new version of the code will take effect right away. To prevent this,
either disable all LATBL processing by disabling the Data Access Table entry, or

Local Applications Table Aug 28, 1990 page 4
PAGEP table processing

The index page logic directs the call-up of application pages. When a page is
being called up, if the lo byte of the longword which contains the pointer to the
entry point of the application page program is nonzero, the 4-byte “pointer” is
assumed to be a program name of type PAGE. (Note that this implies that using a
ptr in the old way can still work as long as the entry point address is on a 256-
byte boundary.) A search is made for a match in the CODES table, and the
download area is sum-checked, memory is allocated in on-board ram for it, and
the program is copied into that area for execution.

When the program terminates, either because a new page is called up or a return
is made to the index page, a scan is made of the CODES table. The allocated area
of any PAGE type entry in the CODES table is freed, and its pointer is cleared. This
is done because only one PAGE program can run at a time. Note that this is in
contrast to the LOOP type programs, in which many can be running at once.

TASK or INIT processing
New tasks may be added to the system code by making a scan at reset time

which looks through the CODES table for any entries of type TASK or INIT. Such
entries can be copied into executable memory and called. What they do depends
upon how they are written. Such a program could spawn and activate a task, for
example. Or it could simply do some job at reset time. Only one call would be
made to such a program, and it would be made from the ROOT task. This adds
another dimension to system configuration possibilities.

Operations Bulletin #1280

Local Control Box
Booster High Level RF

Tue, May 28, 1996
R. Goodwin, B. Peters, R. Florian

As part of the new installation of controls for the Booster high level RF system, a
local control box was proposed to replace the front panel of the MIU crate, used since
about 1970 to interface I/O signals to the Lockheed Electronics MAC–16 mini-
computer. (The MIU interface depended heavily on the particular I/O channel inter
face design supported by the MAC–16 and is unavailable for use with a replacement
system.) The control box purchased for the new local control support is a DynaComp
GreyLine 2200 Series operator panel that provides a four-line 20-character alpha
numeric display, a numeric keypad that includes 6 additional keys, a row of 8 function
keys, and a set of 8 labeled LEDs. The labels for the keys can be configured by the
implementer. The box interfaces to the IRM serial port at rates up to 19200 baud.

FBS
ON
OFF

MOD
ON
OFF

FBS OFF

Modulator OFF

Cavity Short IN

Spark Detect

spare

spare

Volts Display

D/A Display

CAV
IN
OUT

Trip
Log

A/D
D/A

7

4

1

8

5

2

9

6

3

0Clr Ent

Inc

Dec

+/–

Set

Volts PageSel

FB12O 7.452< V
MD12V 24.83 KV
PT12SI- 0.001 A
RF12GE 54.39 KV

Local Control Box p 2

Booster High Level RF
After some local testing and consultation with representatives of the high level

RF group, several suggestions seemed attractive. The display itself is used to show up
to four parameter lines. Each 20-character line provides for a 6-character name, a
space, a 7-character numeric value field, a control marker character, a space, and a
4-character units text field.

The Clr button on the numeric keypad is used as a "clear entry" when entering a
numeric value. The Ent button is used to commit to an entered value and perform the
setting. The +/– button allows entering an arbitrary signed decimal setting value. The
Inc and Dec buttons permit incremental adjustment for an analog setting. In either
case, the setting targets the parameter indicated by the control marker.

The labeled lights on the left side show whether the FBS or Modulator is OFF,
whether the Cavity Short is IN, whether a spark was detected on the last update
cycle, and whether volts and/or setting values are being displayed.

The bottom row of push buttons toggles between ON/OFF or IN/OUT states. The Trip
Log button shows the summary trip counts plus the time of the last clearing of trip
counts. Press the Trip log button again to return to the normal four-parameter list.

TRIPS 11/09/95 0758
FBS= 10
MOD= 3
STA= 16

The A/D D/A button toggles between displaying reading values and setting values on
the four-line parameter list. The D/A display light indicates when setting values are
displayed. This mode is indicated by an engineering units field of "V. ". The Volts
button causes the display values to be in A/D (or D/A) volts units. Press the Volts
button again to revert back to normal engineering units display.

The Sel button sequences the control marker through the controllable parameters of
the current available set of four-parameters, in case more than one such parameter
is controllable. The Page button sequences through the available four-parameter
displays. If the control box isn't used for a period of time, it will revert to the first four-
parameter list.

The functionality described above is supported via a local application called HLRF
that was written by Bob Peters. See the following URL for more information:

http://garlic.fnal.gov/booster_controls/

http://www-linac.fnal.gov/booster_controls/

 Local Station Additions for Acnet
Local applications and more

Dec 26, 1991

The Linac controls upgrade to the local station software required several
additions to that software in order to fit into the Acnet system requirements. This
is an ad hoc list of some of those changes.

Local applications
A local application is a software procedure that is invoked by the system

software to provide a particular feature without being linked into the system
code itself. It is therefore a modular addition to the local station software. Any
local application can be independently enabled and updated to a new version
even while the system is running. It is known by name and not by memory
address; space for a copy in non-volatile memory is handled automatically by the
system support. A given program can also be updated in all local stations at once
using token ring network group addressing. Examples of existing local
applications and their purposes follows:

GRAD
Regulates rf amplitudes in the cavities to compensate for long term drifts

PHAS
Regulates rf intertank phase for long term drifts

CROB
Automatic recovery from pa crobar trips of rf system

DRIV
Automatic recovery from rf system driver trips

PINH
Automatic reduction in rf gradient setpoint after rf trip w/o recovery

QUAD
Automatic recovery of drift tube quad power supply trip

PRES
Regulates ion source pressure

 Note: the above set of 7 closed loops always existed in Linac local stations.

Local Station Additions for Acnet Dec 26, 1991 page 2

AERS
Alarm Event Reporting System shepherds alarm messages to AEOLUS, the

Acnet alarm-handling process which runs on some Vax.

FTPM
Fast Time Plot Manager supports requests for data to be used by the Fast

Time Plotting facility which runs on Vax consoles.

AAUX
Acnet Aux provides for "ping"-type support to check communications.

GATE
Permits gateway support of Acnet-header communications allowing for

copying memory from an SRM to any other SRM.

NETM
Network Monitor ensures that network frame reception is working and

automatically re-connects to the network if it is lost.

TEMP
Regulates water system temperature for the new Linac rf modules

KRMP
Assists during conditioning of the new rf modules. Also collects detailed

spark statistics.

FREQ
Controls a VCO to keep the cavity resonant following application of a large

change in rf power to the cavity.

Local Station Additions for Acnet Dec 26, 1991 page 3

Page applications
Application display programs that run on the small local consoles have

always been a part of the local station software. The original Linac supported the
standard set of 4 below. Several new page applications have been added in the
course of the controls upgrade for Linac.

PARM
The parameter page is used widely in Fermilab accelerator controls systems

to support general display, control and plotting of analog parameters.

EDAD
Edit Analog Descriptors provides for entry of analog device information into

the local station database.

EDBD
Edit Binary Descriptors provides for entry of binary device information into

the local station database.

MDMP
Memory Dump allows flexible inspection of memory for both hardware and

software diagnostics.
Note: The above 4 are the original basic suite of page applications.

SURV
The Survey page assists in maintenance of the large number of token ring

nodes that are attached to the token ring network.

REQR
Request Reply timing can be histogrammed for the Classic protocol.

CRTI
CRT Image permits running a page application remotely on another node.

Implemented in another platform, it permits running any page application from
another platform, such as a workstation or Macintosh.

SRMC
This SRM Copy page uses the GATE gateway local application to support the

copying of memory between any pair of SRMs.

Local Station Additions for Acnet Dec 26, 1991 page 4

New modules
Several new modules provide additional support needed for the new Linac

controls system.

ACREQ
This large module provides complete support for the accelerator data

acquisition protocol, sometimes referred to as RETDAT/SETDAT. Included is
support for offset/length to provide generic access to the local station database
to assist in uploading to the central database. Also included, to reduce network
traffic to the consoles, is server support, in which all Linac device data is
retrieved from a Vax console through a single "server node", which in turn
collects more efficiently from the "real" source nodes. Again, to reduce the usual
network traffic load on Vax consoles using the standard Parameter Page,
averaging support is provided for analog device readings, preferentially
averaging beam pulses over no-beam pulses.

OPENPRO
To facilitate the support for additional protocols, a set of routines is used with

a Protocol table to route communications for more protocols through the ACREQ
module. In particular, it is now possible to write a local application that supports
a new network protocol of the Acnet-header type. Examples of such LAs are
FTPM, AAUX, and GATE.

ARCINT, SRMREQ
Arcnet network support was added to the system in order to communicate

with the SRMs, which are the data acquisition interface for the new Linac. A new
simple data acquisition protocol was designed for use with the SRMs. Special data
access table entry types were also needed to permit collection of data via Arcnet,
taking maximal advantage of arcnet communications.

LOCAPPL, SETPROG
These two modules provide the support for local applications and the

associated downloading of same.

ASTATUS
Composite status words are assembled from the digital I/O interface via a

table-driven scheme. These words can be scanned for alarms in parallel, to mimic
the traditional Tevatron notion of power supply status words.

Network Frame Monitor
Local application

Wed, Jun 4, 1997

The FMON local application is designed to aid network frame diagnostics. It can
capture a part of network frames received or transmitted to/from a selected target
node, or from all nodes. It also checks for duplicate frames by monitoring the
identification field in the IP header.

Traditional embedded network diagnostic
In each IRM or local station system, network frame diagnostics are included

that write into the NETFRAME data stream (DSTRM entry #0) a short record of each
network frame that is received or transmitted by that node. The record contains the
node#, the size of the frame, a ptr to the frame buffer holding the frame, and the
calendar time of the frame reception or transmission, with resolution down to half
milliseconds since the start of the current 15 Hz cycle. A page application NETF

allows viewing of the contents of this data stream. It can also allow viewing frame
contents, but this part can only work if one asks to view a given frame before the
circular buffer of frames is overwritten by successive receive or transmit frame
activity. For busy systems, especially including IRMs that connect to ethernet, one
may have only a few seconds before the buffers are overwritten. This makes it very
difficult to do some kinds of frame diagnostics using this embedded tool, when it is
necessary to view frame contents at leisure.

New method of capturing frames
The FMON local application runs in a system for which frame diagnostics are

needed for frames associated with communication of that node with another node.
The approach in using FMON is that of doing an experiement, rather than operating a
typical utility. These are the FMON parameters available on Page E:

E LOC APPL PARAMS 06/03/97 1438
NODE<0509> NTRY<28>/64 H<0508>
NAME=FMON CNTR=47 DT= 0.5 MS
TITL"NET FRAME MONITOR "
SVAR=00044D9A 05/06/97 0931
ENABLE B<00EF>*FMON ENABLE
NODE# <E071>
ON B<00EE>*FMON CAPTURE ON
MAX INDX <2000>
DIAGPHI <0030>
DIAGPLO <0000>
W OFFSET <0011>
FLAGS TR <0003>

First there is the usual enable Bit# needed for each local application instance.
The node# parameter identifies the target node for which frame communications are
of interest. In the case of IP-based communications, this is a pseudo node# that

Network Frame Monitor p 2

corresponds to an IP socket, the combination of an IP address and a UDP port#. The
pseudo node# uses 6 or E for the hi hex digit, where 6 is used for token ring and E is
used for ethernet. The middle two digits identify a 16-byte entry 02–FF in the IPARP

table, and the least digit is a port# index that refers to a UDP port# via the associated
port# block that is allocated for use while an IPARP table entry is active. An entry
times out after no activity is observed for about an hour. Port# index values of 1–F
signify valid UDP ports in current use. An index value of 0 means a port# is not used,
such as for the case of an ICMP ping request/reply message or an IP datagram
fragment. So, if a pseudo node# is used as a target node# parameter, it really refers to
a node and port combination. In order to find out what pseudo node# value to use here,
one may have to check the traditional NETFRAME diagnostics during a trial run.

The ON capture Bit# parameter allows enabling or disabling the frame capture
logic without disabling the local application itself. This is convenient because one
needs to check the FMON static variables—allocated dynamically when the local
application enable bit is set—to get information about where the frames are
currently being captured. The maximum index parameter refers to the size of the
memory available for capturing frame contents. A 64-byte data structure is used for
frame capture; thus, only a portion of the frame may be captured. In this example,
the maximum index parameter of $2000 means that there is room in memory to
capture parts of 8K frames. The two following parameters together comprise the 32-
bit base address of memory that is to be used for the frame capture data. For IRMs it
is common to use $300000–3FFFFF for this purpose. This is the fourth megabyte of
memory on the CPU board, currently not used for system purposes.

The word offset parameter allows capturing parts of frames not beginning with
the start of the frame header. For example, for ethernet, an offset value of $07 will
skip the 14-byte frame header. For IP frames, a value of $11 will skip both the frame
header and the 20-byte IP header. A value of $15 would additionally skip the 8-byte
UDP header, allowing capture of frame contents beginning with the start of the UDP

datagram contents. the captured data is actually limited to 56 bytes, as the first 8
bytes of the 64-byte record is for the calendar time of the frame reception or
transmission. The "TR FLAG" parameter refers to whether receive, transmit, or both
receive and transmit frames are to be captured. The least significant two bits are
used for this purpose:

0 none
1 receive
2 transmit
3 both receive and transmit

Note that the use of a 64-byte structure to hold captured frame contents is a

Network Frame Monitor p 3

convenient match to the Memory Dump page application—not an accident. One can
advance through successive frames using that diagnostic page application and very
quickly identify changed fields of interest.

The FMON program builds on the traditional frame NETFRAME diagnostics in
order to provide its functions. It uses a local data request to monitor the records
written into that data stream each 15Hz cycle. When it gets a match for capture, it
uses the buffer ptr to grab the frame contents that are to be captured, during that
same 15 Hz cycle, thus insuring that the network buffers will not be overwritten
before the contents can be captured. The capture circular buffer is typically quite
large; if necessary, the capture enable bit can be turned off to assure that captured
frames may be examined at leisure until the cows come home.

Duplicate frames
By monitoring the identification field—designed for identifying IP datagram

fragments that belong to the same IP datagram in order to allow IP fragment
reassembly to work—in the IP header of received frames, FMON can notice when
duplicate frames occur by maintaining a small table of such data for frames recently
received from the target node. This logic was installed at a time when we were
experiencing such problems that turned out to stem from overloaded network
hardware. There is no guarantee that a particular IP implementation would be
compatible with this specific duplicate frame logic, but those that were tested
implemented the standard by using an incrementing counter value for every IP
datagram transmitted, a scheme that insures there will be no repeat until 65536
datagrams have been transmitted. It's simple and it works.

Method of operation
To perform an experiment in frame capture diagnostics, prepare suitable

parameter values that will be needed, using Page E. The parameter that will likely
require the most attention is the target node#. For IP frames, this will be a pseudo
node# word that represents a UDP socket, as described earlier. A trial run may be
needed to determine this value; use the NETFRAME diagnostics via Page F to get a
handle on this. It can capture the occurrences of the last 237 frames received or
transmitted. One can usually identify the frames of interest by the frame size and
period of activity, so that one normally doesn't have to be quick enough to capture the
actual frame contents using that program. Enter the node# thus determined as the
target node# parameter value. It will be good for an hour or so, at least, because that
is the timeout for ARP table entries. When that much time passes without any IP
receive or transmit activity for that node, the ARP table entry will be cleared. The
next time access occurs with the same node, it may quite possibly be assigned a
different table entry than before, and will therefore have a different pseudo node#.

Network Frame Monitor p 4

Choose the word offset used for frame capture according to what part of the frame
contents needs to be captured. Select whether receive or transmit frames should be
captured. Enable the capture flag bit. If it is already on, toggle it off and back on. This
is optional, but it will cause the capture to begin at the start of the memory used for
the purpose. The memory stores frames in a circular buffer mode; therefore, the last
"MAX INDX" frames will be captured and available anyway, but it may be more
convenient to know that the capturing starts at the beginning. When the capture
enable bit transitions from 0 to 1, the internal logic resets the capture circular buffer
pointer to the beginning.

Perform the experiment during which frames must be captured. If it is necessary to
also capture frames relating to a second target node#, then install a second instance
of the FMON local application. Obviously, different parameters must be used for the
enable bit, although the capture enable Bit# parameter could be the same for both
instances. But be careful not to use the same area of memory for the capture circular
buffers needed by each instance!

When the condition is reached for which the frame data should be studied, one can
turn off the capture enable Bit#. This will freeze the capturing. In some cases, this
won't be necessary, as the condition that is reached may terminate the
communication anyway. As an example, this tool was used to capture frame data so
as to learn what caused snapshot plot activity to terminate. The condition reached
was cancellation of the snapshot request and therefore termination of communication
activity; no further frames would be captured anyway. It depends upon the exact
nature of the experiment being performed.

To examine the frames captured, one can observe some of the static variables in use
for this local application. Using the ptr shown on Page E, one can see the following
picture on the Memory Dump Page for the time in which this was captured as an
example:

Network Frame Monitor p 5
8 MEMORY DUMP 06/04/97 1055
0509:044D9A 0904 0000 0000 0007
0509:044DA2 0509 0091 0000 BF0B
0509:044DAA 01CE 2000 0000 01CD
0509:044DB2 0030 0000 0030 7300 Ptr into capture circular buffer
0509:044DBA 0001 0001 0001 0001
0509:044DC2 0101 0000 0000 0000
0509:044DCA 0000 0000 0000 0000
0509:044DD2 0000 0000 0000 0000

0509:044DDA 000E 000E 0000 0000
0509:044DE2 0000 0000 0000 0000
0509:044DEA 4F06 BE76 2FE8 A059
0509:044DF2 12CB 823A F126 DC96
0509:044DFA AD8E C98E E08E F88E
0509:044E02 1E8F 3B8F 558F 6E8F
0509:044E0A 948F AC8F C48F DD8F
0509:044E12 0390 568E 6E8E 878E

On the first "page," fourth line, in this example, the address 00307300 is the pointer to
a 64-byte structure containing the date and up to 56 bytes of the contents of the last
frame captured. Here is that structure:

0509:307300 9706 0410 5506 0083 Time 6/4/97 10:55:06 cycle 0, 33ms
0509:307308 008A 008A 00E6 DADE UDP header (srcPort=dstPort=138)
0509:307310 1102 12BD 83E1 7BD9 UDP datagram contents used for
0509:307318 008A 00D0 0000 2045 NETBIOS datagram protocol
0509:307320 4246 4145 4945 4A45
0509:307328 4543 4143 4143 4143
0509:307330 4143 4143 4143 4143
0509:307338 4143 4143 4141 4100

Since the word offset parameter was $11 for this example, the captured frame data
begins at the UDP header, assuming IP communications are used. In this example, the
UDP port# used is 138. According to the RFC document that describes Internet
Protocol Assigned Numbers, this port# is used for NETBIOS Datagram Service. The
UDP length is 230 bytes. It was nothing of local interest, but in this example, pseudo
node# E071 just happened to correspond to aphid.fnal.gov, presumably a PC. The last
experiment using FMON in node0509 was done many days ago, after which the
meaning of the pseudo node# changed to another node. Still, it serves here as an
example. One can find the significance of the pseudo node# by looking up the entry in
the IPARP table, currently based at $40E000 in all IRMs. At $40E070 we find the
following ARP table entry:

0509:40E070 00A0 2491 A138 0000
0509:40E078 83E1 7BD9 0004 3A98

The port# block at $43A98 is as follows:

Network Frame Monitor p 6
0509:043A98 0060 0426 0000 0015 Port# memory block is type $15.
0509:043AA0 002C 0003 0EBE 03CE
0509:043AA8 0000 0000 0000 0000
0509:043AB0 0000 0000 0000 0000
0509:043AB8 0000 0000 008A 0000 Each entry in array is port#, use count
0509:043AC0 0089 0000 0000 0000
0509:043AC8 0000 0000 0000 0000
0509:043AD0 0000 0000 0000 0000
0509:043AD8 0000 0000 0000 0000
0509:043AE0 0000 0000 0000 0000
0509:043AE8 0000 0000 0000 0000
0509:043AF0 0000 0000 0000 0000

In the port array, the port index 1 (lo 4 bits of $E071) corresponds to port 138. The IP
address is 83E17BD9, or 131.225.123.217, which is aphid.fnal.gov. Looking at previous
captured frames, it appears that this frame, presumably broadcast from
aphid.fnal.gov, is received every 15 minutes. If this level of activity continues, this
ARP table entry will not time out.

Duplicate frame diagnostics are shown on the second "page" of the first memory
display. The two values of 000E followed by 0000 indicate that the recent time-stamp
values and corresponding identification field values from the IP header. (The 000E
values are indexes into the arrays of time-stamp and identification field values.) The
fourth word of 0000 indicates that no duplicate frames received from the target node
were tallied during the time since the capture enable bit was last set to 1. The time-
stamp array is a byte array starting on the third line; the identification field value
array begins on the fifth line.

Network Time Protocol Client
It’s about TIME!
Thu, Apr 21, 1994

Local stations have always maintained correct time-of-day, derived from an NBS satellite clock
receiver that transmits via RS-232 a 13-character Ascii message that is interpreted by one of the
stations on the network, which then broadcasts the result to the rest. To use this system in
another place, one would need to purchase such a radio receiver. But with the widespread use of
Internet, another scheme taking advantage of the Network Time Protocol to access a server
seems an easier means to get the time-of-day. This note describes an implementation of an NTP

client as a local application. It periodically queries an NTP server, interprets the reply, and
updates the local time-of-day. Between queries, the time-of-day is maintained via timing based
upon a crystal on the CPU board.

The NTP protocol is a simple client server model. A client sends a simple request addressed to
UDP port# 123 of an NTP server node. The server returns a reply that includes an 8-byte time-of-
day that consists of a 4-byte integer number of seconds and a 4-byte fraction. The time value is
based upon January 1, 1900. Since some time in 1968, the value of this 8-byte quantity has been
negative; i.e., the number of seconds since 1900 has been more than 231. The value will “roll
over” in 2036. In the meantime, we should be able to talk about time-of-day reasonably
accurately.

The parameters used by this local application are as follows:

(put picture here)

Every local application has an enable bit as the first parameter. The second parameter for the
TIME local application is the period between queries expressed in seconds. (For example, 003C =
60 seconds.) The next two word parameters comprise the IP address of the NTP server to be
queried. Here, 83E17C28 is 131.225.124.40, the IP address of CNS33, a Fermilab NTP server. Next is
the number of retries before timing out. Next is the time zone correction in hours relative to GMT,
which depends upon whether Daylight Savings Time is in effect. Finally is given the multicast
target node# for sharing this news with other local stations on the network.

Now for the details. The Network Time Protocol is described in RFC-1305 in 300K of detail. A
much easier treatment is in RFC-1361, describing the Simple Network Time Protocol that is
suitable for end user clients. SNTP uses the NTP in a simple way. This SNTP variation is used by
the TIME local application.

The message format is 15 longwords, or 60 bytes, in length. In the SNTP variation query format,
the first byte is $0B, with all other bytes zero. The meaning of this first byte is that the Version
Number = 1, and the Mode = client. Version 3 of NTP is described in RFC-1305, Version 2 in
RFC-1119, and Version 1 in RFC-1059. There was a Version 0 described in RFC-959 that is no
longer supported by NTP servers. An NTP server that supports Version “n” also supports lower
versions down to 1.

Network Time Protocol Client p. 2

The reply to such a query is up to 60 bytes in length, where the 8-byte Transmit Timestamp is
extracted for interpretation as the present time-of-day. It is found 40 bytes deep into the message.
To convert this form into the time-of-day requires some work. The TIME local application may
not be the best example of how to do it. But here is a description of its current implementation:

Empirically, it has been determined that the value of seconds since the start of 1994 is
$B0CF3B80, or 2966371200. This value assumes the Greenwich Mean Time zone, which is 6 hours
ahead of Central Standard Time. The software subtracts this 1994 base from the Timestamp
value and derives the rest of the month, day, hour, min ute and second from the rest. If more than
a year has passed since 1994 (January 1, 1995, or later), it assumes 365 or 366 days of seconds
per year. Our calendar system is not quite perfect, so that the time-of-day in some years has an
extra “leap second” inserted after the last day of the year. The Timestamp returned by NTP

servers, however, does not include any such “leap second,” so the time-of-day produced by TIME

should be ok for subsequent years. (This is explained in RFC-1305.)

Once the conversion has been made, the local record of the time-of-day, in BCD at memory
address 00000788, is set to the current time. Then, if the target node par ameter is nonzero, a
message is prepared using Classic Protocol to send it to the local stations on the same network.
The address that is used for this depends upon a table of transmittable multicast addresses in the
TRING table in non-volatile mem ory. This table of 8-byte entries is at address 00105B80 in 133-
based local stations and at address 00405B80 in 162-based stations and Internet Rack Monitors.

A timeout of 2 seconds is allowed before assuming no response from a server. This is a constant
in the TIME local application. The number of retries parameter should allow for a timely response
very soon, however, in case routers need to perform ARPs, say, and fail to pass an unexpected
frame the first time.

NonLinear Units Conversion
Local application
Fri, May 28, 1993

Radiation monitors called “scarecrows” and “chipmunks” are used to measure radia
tion in beam enclosures at Fermilab. The readouts are non-linearly related to radiation
units of mr/hour. This note describes an easy implementation for support of the linear
ization of such signals, in order to make it easy for arbitrary host platforms to scale to
engineering units linearly.

An example of the setup of this RADC local application is as follows:

E LOC APPL PARAMS 05/28/93 1036
NODE<0576> NTRY<11>
NAME=RADC CNTR=00AE
TITL"RAD MONITOR CONVERSION "
SVAR=0004942C
ENABLE B<00BE> RADC ENABLE
FORMULA1 <0001>
INPUT1 C<0000> N576T0 V
OUTPUT1 C<000B> RADT1 MRH
FORMULA2 <0002>
INPUT2 C<0000> N576T0 V
OUTPUT2 C<000C> RADT2 MRH
FORMULA3 <0000>
INPUT3 C<0000> N576T0 V
OUTPUT3 C<0000> N576T0 V

Up to three conversions can be specified in each instance of this local application. Each
specification includes the formula index#, the raw channel#, and the result channel#.
The formula index#s are 1 for chipmunks and 2 for scarecrows. The input channel
provides the raw voltage reading. The output channel is a dummy channel whose scale
factors have been suitably chosen to fit the expected range of the result and the
resolution needed. Ultimately, it becomes a 16-bit signed value.

The operation of the logic is to get the reading of the input channel, apply the indicated
formula, and write the result to the output channel using engineering units. The
formulas used are of this form:

radiation:= Exp(c0 + v*(c1 + v*(c2 + v*(c3 + v*c4))))
The two cases supported simply use different coefficient values. Additional formulae
could of course be added. This local application isn’t restricted to radiation conversion.
Any constants and coefficients needed would be part of the program code, however.

The source code is 183 lines of Pascal, executing in less than 1K bytes.

Resistor-Temperature Conversion
Tesla cryogenic system local application

Wed, May 11, 1994

The TRTD local application supports needs of low temperature measurements for the Tesla
superconducting RF laboratory in LAB-2 in the Fermilab village. Four signals are demultiplexed into
16, thermal emf’s measured and used to get the resistance of the cold resistors, which are of two
types, platinum and carbon. From the resistance, calibration tables are used with linear
interpolation to get the temperature in degrees Kelvin. This note describes the methods used to do
this.

Parameters layout
The available parameters for TRTD as seen via “Page E” are as follows:

(put picture #1 here)

The usual enable Bit# argument is followed by MPXDATA, the base channel# of the four
multiplexed signals. V+,ETC is the base channel# of the sixteen V+, V–, emf, res istance, and
temperature values, altogether 5 sequential “arrays” of 16 channels. The R REF reference resistor
channel# specifies the Pt reference resistor. The next channel# holds the Carbon reference resistor
value. MPXSEL is the base Bit# of the digital byte used for selecting the four 1-of-4 multiplexer
values. The program sequences this byte through values of 00,AA,55,FF on each four successive
cycles. The CURRDIR parameter is the base Bit# of the two bits used for controlling the current
direction through the Pt and C resistors, respectively. The EMF PER para meter is the number of
cycles between measurements of the V– and emf values, done by reversing the current direction for
four cycles to collect these data.

Demultiplexing
Signals from the RTD system are very small, so they are amplified by four-input

multiplexed amplifiers. Two-bit select codes are wired to each amplifier. The program operates all
four two-bit select codes at once, as they share the same byte of digital output. Data is read from
one selection each cycle, which for the LAB-2 facility is 10 Hz. In this way, all 16 channels of data
that result are updated every 400 ms.

Thermal emf’s
To measure the thermal emf’s that result from the conductor leads that connect from room

temperature to cold temperatures, it is necessary to reverse the current. Every so often, perhaps
every few minutes, the current is reversed and the data collected for the negative direction of
current flow. After taking four cycles to accomplish this, the current is returned to the usual
positive direction. The formula for the emf is as follows:

emf = (V+ + V–)/2

These emf values are updated every time a new V– is measured with the current direction negative.

Resistances

Resistor-Temperature Conversion p. 2

The resistors used are of two types, platinum and carbon. The single Pt resistor calibration
table is fairly linear down to liquid nitrogen temperatures, so linear interpolation can be used with a
set of 10 calibration points only. These Pt calibration points are part of the program source and are
as follows:

 (put picture #2 here)

The formula for resistance is as follows:

R= ((V+ – emf)/V+
ref)*Rref

Here V+
ref is the voltage across the reference resistor (Pt or C) and Rref the reference resistor value

itself. The reference values are constants in the program. The values at the time of this writing are
Rref = 99.82 (Pt) and 1000.0 (C).

The carbon resistors calibration curve is very nonlinear, so more calibration points are used. Linear
interpolation is done with 20 calibration points between the log of the temperature and the log of
the resistance. In order to collect these calibration data for use by the TRTD program, the calibration
data points were entered into Excel by editing the original full calibration data set text file. In the
spreadsheet, it was easy to calculate an average of the 5 calibrated carbon resistors for use with
those carbon resistors that have no measured calibration data. In addition, logs were calculated for
the temperature and resistance calibration data points. These log values were output from Excel via
a text file, which was then edited into an MPW assembly source file containing “DC.S” data
directives. This source file was then assembled and the resulting data downloaded into the station
that will run the TRTD local application. Upon initialization, the program requests this local data file
and places the data into its calibration data arrays for use in converting the carbon resistances into
temperatures. Part of the calibration data entered into Excel was this:

(put picture #3 here)

The calculated logs of the calibration point data are as follows:

(put picture #4 here)

These data were then edited as data declaration statements into an MPW assembly source file,
assembled and downloaded as a data file of 32-bit floating point values called DATATRTD into the
local station along with the LOOPTRTD local application. When the program is first initialized, it
reads the data file for use during Carbon resistor temperature conversion.

Internal details
Four channels are read each cycle and converted as necessary. Of the 16 channels read,

they are of the following “resistor types”:

(put picture #5 here)

Resistor-Temperature Conversion p. 3

The resistor type specifies which reference resistor is used as well as which calibration data to use
to perform the temperature conversion.

During program operation, a data structure allocated at initialization keeps track of the context.
Using Page E, one can find the location of this dynamically assigned data structure. Its structure at
the time of this writing, expressed in the format produced by the memory dump page application,
at a time when the signal values may not have been valid, is as follows:

(put picture #6 here)

The diagnostic deltaTimes byte array shows elapsed times per 10 Hz cycle in units of 0.5 ms. (A
value of 02 means 1 ms.) Since the program operates on 4 signals per cycle, these times exhibit a
periodicity of four cycles.

All floating point values are in IEEE standard 32-bit single precision.

Debug mode
A special debug mode is available for checking the ohms to temperature conversion for the

Carbon resistors. To use it, find the above structure using Page E. Then set the debug#, which is
initialized to zero, to the index value 1–16 of the channel whose conversion is to be checked. When
this word is nonzero in this range, the program stops doing its usual work and concentrates on
only the given channel index. It accepts the resistance value from the resistance channel, rather than
computing a new one based upon the current demultiplexed data readings. This allows a value to
be set into a resistance channel and the temperature channel observed resulting from this
conversion. One can make a calibration plot of temperature versus resistance in this way using, for
example, the Parameter Page on the Macintosh written by Bob Peters. Here is an example of
making such a calibration curve for the T6 signal:

(put picture #7 here)

Resistor-Temperature Conversion p. 4

Logarithms, etc
Because of the extremely nonlinear characteristic of the resistance of the Carbon resistors

relative to temperature, it was necessary to work with logarithms of these parameters. With linear
interpolation on the logarithms, reasonably accurate results can be obtained. But the IRMs use a
68040 cpu, which does not have support for logarithms and powers on-chip, although it does have
support for the basic add, subtract, multiply and divide. So a routine was needed to compute
logarithms and powers. In a book called “Approximations for Digital Computers” by Cecil
Hastings, Jr., Princeton University Press, 1955, can be found suitable formulae for these and
other functions to several degrees of accuracy. The formula for Log10(x) that was used in TRTD has

an error function < 0.000002 over the range 1 ≤ x ≤ 10 . Its form is as follows:

(put picture #8 here)

RET/SETDAT Test Page
Local Station Application

Mar 22, 1990

Introduction
A standard message protocol has been used since 1982 for accelerator control

at Fermilab between the console computers and the front end computers. It is
referred to locally as “DAS,” (Data Acquisition Services) or as “RETDAT/SETDAT,”
after the network task names that are assigned to receive data requests and
settings, respectively.

The Linac control system interfaced to this protocol via the Linac front end PDP–
11, which translated between this protocol and the “classic” protocol that the
Local Stations have always supported. The new Linac control system Local
Stations will use this standard DAS protocol directly. The VME local stations now
support this message format for data requests and for settings. This application
page exercises this protocol by issuing data requests or settings to a local station
and displaying the responses that are returned. It is written using the local
station’s Network Layer interface routines.

Display page layout—data request mode

 RET/SETDAT TEST 03/21/90 1122
PI #BY SSDN
12 2 0002 0008 0000 0000 0
13 2 0102 0008 0000 0000 0
 1 20 0202 0008 0000 0000 -2
REP= 1 FTD=0004 M=1 RQID=1222

ANSWERS 0 42 5.5 MS 0
00 0005 0000 0800 0800 5C71 3C19
0C 0006 1222 0030 0000 0CD0 0000
18 0CD0 0000 002D 0CCC 0000 00CC
24 0000 0100 0000 0056 0000 0000

Repeat count,
Freq Time Desc

Prop Index,
#bytes, SSDN

NetOpen status
NetWrite status
xmitStat
MLT bit, Request id
 reply counter
 time to first reply
NetRead status

Answer message
 Acnet header,
 { Status word,
 Answer data }

Acnet header
status word

This snapshot of the test program display serves as an example of several of its
features. It shows an example of requesting a 2-byte reading, a 2-byte setting, and
a 20-byte analog alarm block all from channel 0 in node 08. The FTD specification
indicates that the data is to be collected at intervals of 15 Hz (66 msec).

Parameter entry for data requests
The M bit is set for periodic requests. The request remains active until a cancel

message is sent. If the M bit is zero, the request is automatically cancelled after

RET/SETDAT Test Page Mar 22, 1990 page 2
update of the first set of reply data. The RQID is the request id that serves to
uniquely identify one request from another.

Enter up to three device specifications. The Property Index and the #bytes
requested/device are specified in decimal. The SSDN (SubSystem Device
Number) is entered in hex. It is a 4-word field that is normally extracted from the
central database given a property index and a device index. (The reference that
describes these terms more fully is Acnet Design Note 22.28.) To omit a device
spec, blank out the property index field.

The Property Index values of interest are:
1Analog alarm block
3Basic Control
4Basic Status
5Digital alarm block
7Extended status
12Reading
13Setting

The formats for the 4-word SSDN used in Linac are as follows:

idLng=2listype#

node#

Chan#/Bit#

—

listype#

node#

memory
address

idLng=3

or

These examples give the long ident forms for channels, bits and addresses. The
short form is also supported for backwards compatibility, where the idLng=1
word for channels and bits, and idLng=2 words for addresses.

The Frequency Time Descriptor (FTD) expresses the repetition period in 60 Hz
cycles. The REP is the repeat count for testing the timing for longer requests. It
merely repeats the same set devices to build a request with up to 3*REP request
packets, each of which requires 16 bytes in the network data request. Thus, if you
enter a count of 100 for a single device spec, the request message is more than
1600 bytes in length.

Interrupt anywhere in the parameter specification area of the screen (on rows 2–
8) to initiate the data request. The word ANSWERS in the response area of the
screen should be hi-lited to indicate the request is active. (If it is a one-shot
request, or if an error is returned, it may not stay hi-lited for long.) When the first
(or only) response is received, the elapsed time is displayed on the ANSWERS line
in milliseconds. This time is measured from just before the call to NetWrite until

RET/SETDAT Test Page Mar 22, 1990 page 3
just after the call to NetRead that returns the first response in the test program.

Just to the left of the elapsed time to first response is the decimal count of replies
received. The Acnet header status word is also shown in decimal just after the
word ANSWERS. This is done for convenience in interpreting error codes, which
are negative numbers.

Other status replies that are shown are toward the right end of the screen. The
status return from NetOpen, which is called upon entry to the page, is given at
the end of the third line. Below that is the return from the call to NetWrite when
the request message was issued. Below that is the transmit status word that gives
the success of the network transmission. At the end of the ANSWERS line is the
status return from the call to NetRead which returns the reply data.

Cancelling data requests
Cancel an active request by an interrupt on the ANSWERS line. The hi-liting

will be removed as the cancel message is sent (a USM with bit#9 set in the Acnet
header flags word). (Note that an interrupt on this line when a request is not
active switches to the setting mode.) Leaving the page results in all active
requests being cancelled the next time a reply is received. This happens because
the application closes its network connection (via NetClose) upon exit.

Answer data viewing
Six lines are used to display answer data in hex with 6 words per line. The

byte value at the left shows the offset in bytes of the first word on the line. There
are three ways to adjust the starting offset for the block of answers.

The easiest way is to use the raise/lower buttons on the local console. It will
adjust the offset by 72 bytes (6 lines of 6 words each) at a time. If you advance too
far, it wraps to the start.

To adjust the offset so that the first word is one of the displayed data words,
merely interrupt under the word you want to be the starting word displayed.
Obviously, you can only move forward in this way.

The third way to adjust the offset is by typing in the desired offset in the first
characters of the first line of answer data and interrupting. Three characters can
be entered, even though only the least significant two characters can be
displayed due to the screen’s limited number of characters per line.

The entire response message is displayed, beginning with the 9-word Acnet
header. (For an error response, this is all you get.) This is followed by a reply
packet for each device, consisting of an error status return code followed by the
answer data for that device, padded to an even number of bytes.

RET/SETDAT Test Page Mar 22, 1990 page 4

Details of the example response
The first 9 words are the Acnet header. The first word shows that it is a reply

message with the MLT bit set. The next word is the reply status word, and it is
also shown in decimal on the line above. The destination and source bode of the
request are both node 08 in this case. This example illustrates use of the network
to make a request to itself. (If it didn’t do that, it would always require two nodes
to do the test.) A by-product of this is that the xmitStat value shown at the end of
the fifth line is -2, indicating “address not recognized,” which in this case is
normal.

The next two words of the Acnet header are the destination task name, which for
Acnet data requests is RETDAT, in the Radix-50 encoding commonly used by
PDP-11 computers. The source task id is 6, which denotes the table index in the
Network Connect Table returned by the call to NetOpen. The request id is
followed by the message size word, which is the total size of the response
message including the Acnet header itself.

The Acnet header is followed by the reply packets. In each case, the error status
word is zero, indicating no errors. Both the reading and setting of the device are
0CD0. The analog alarm block includes the nominal and tolerance values of 0CCC
and 00CC, respectively. The value 0056 is the trip counter.

The time response value for this example is 5.5 msec. This seems to be a common
value for a one-shot minimal data request in any of the three protocols supported
by the Local Station software. As of the time the snapshot was taken, there had
been 42 replies received.

RET/SETDAT Test Page Mar 22, 1990 page 5
Switch between request/setting modes

Interrupt on the ANSWERS line to switch into setting mode from request mode.
Interrupt on the SET-ACK line (same one) to switch back to request mode from
setting mode.

Display page layout—setting mode

 RET/SETDAT TEST 03/21/90 1124
PI #BY SSDN
13 2 0102 0008 0000 0000 0
 0
 -2
REP= 1 RQID=1788
1234 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000
SET-ACK 0 1 5 MS 0
00 0004 0000 0800 0800 9C77 3C19
0C 0006 1788 0012

Repeat count

Setting data

Prop Index,
#bytes, SSDN

NetOpen status
NetWrite status
xmitStat
Request id
 reply counter
 time to ack reply
NetRead status

Acknowledgment
Acnet header only

Acnet header
status word

Parameter entry for settings
The device spec data is entered the same way as for requests. In addition, the

setting data may be entered. There are 24 bytes of setting data available. If more
setting data is required to satisfy the device specs, the setting data words are
simply repeated. When the REP (repeat count) is more than one, the setting data
is re-used starting at the beginning for each repetition. No FTD value nor M bit
value is used for settings.

Setting acknowledgment
The reply to a setting is the status-only acknowledgment message. It consists

only of the Acnet header with the status code in the second word. For the
example shown, The 0004 indicates a reply messages, the destination node and
source nodes are both node 08 as before, the destination task name was SETDAT
in Radix-50 encoding, the source task id was 6, the request id was 1788, and the
total length of the reply message is 18 bytes. The time to respond was 5 msec.

Serial Server
Local Station application

Oct 17, 1989
Overview

The Serial Server facility for the Fermilab D0 VME systems provides for a serial RS–

232 connection to the Token Ring network of VME stations. A computer plugged into

the serial port of any VME station can request data from any devices in the entire

network of stations. In addition, settings can be made to any device in the network.

These two commands are supported with the full generality inherent in the VME station

software, the only real limitation being that of the serial baud rate. One can program any

application in a familiar environment and yet have access to all the data in the system.

The Serial Server is implemented as an application program running on a VME station.

The station used does not have to be the same station providing the serial port, although

that might be a likely. Since it is an application, however, the server functions will stop if

one leaves the application page. Currently there is a limitation of six simultaneously

active requests supported by the server. A request for data can be a one-shot request, or

it can be repetitive. The maximum repetition rate is 15 Hz, although one may reach the

baud rate limit soon at that rate if too much data is being requested. The serial data is

returned via a spooling mechanism using the available dynamic memory, so that the full

baud rate can be delivered.

Message encoding

The command messages used to request data and make settings are of the same

format as is used by the Token Ring network, but it is expressed in an ASCII encoding

method based upon the Motorola S-record object format. That format provides for an S0

header record, followed by any number of S1 data records comprising the content of the

block, followed by an S9 record which terminates the block. Each record includes a

length byte, a two-byte “Load Address” (LA), any content bytes, and a checksum byte,

all expressed in hexadecimal ASCII at two characters per binary byte of data. (Note that

hex digits A–F are expressed in upper case only.)

The S0 header record LA is used in a response to indicate an error when nonzero. The

header content data bytes allow the user system to tag the request with a request-id,

which may be used to match the returned data block with the request. The S9

terminating record uses the load address field to specify the number of S1 data records

included in the block. The receiver can test this count to insure that no data records were

lost in the block transmission. In order to use a format which is incompatible with the

Motorola format, the non-hex character S is expressed as a lower case s. This is to insure

that such serial records do not mistakenly get used as input to the Download application

program.

Examples

An example of a request for a single reading of channel 04:000 (channel 0 in system

4) to be returned at a 1 Hz rate is as follows: (Note that the spacing indicated here is to

aid the eye for illustration only.)

Serial Server Oct 17, 1989 page 2
s0 05 0000 0001 xx<CR>
s1 0D 0000 2001 0F 01 2001 0002 0400 xx<CR>
s9 03 0001 FB<CR>

The first record specifies a request-id of 0001—it may be any value up to 10 bytes long.

The second record comprises the entire request command. The 2001 identifies the

command as a request-for-data using list 1, the 0F is the count of 15 Hz cycles

representing 1 Hz repetition rate, the 01 is the number of listypes (which specify the

type of data requested), the 2001 specifies 2 bytes per ident and only one ident in the

request, the 00 is listype 0 (A/D readings), the 02 means that two bytes are requested,

and the 0400 is the (short) ident for channel 0 of system 4. The third record includes the

0001 to indicate the count of s1 records in the block.

The response to be expected from this command might be as follows:

s0 05 0000 0001 xx<CR>
s1 09 0000 0001 0000 4000 xx<CR>
s9 03 0001 FB<CR>

The header record specifies 0000, signifying no errors were detected in the previous

request command. (If the request command was received and recognized, but

something was wrong with it, the reply would have consisted only of an s0 record with

a nonzero LA field.) The 0001 echoes the request-id sent in the request command. The

s1 record has a 0001 to indicate that it is an answer message (the hi nibble=0), and that

the list number =1. The next 0000 word means no errors from the data collection

system. The word of 4000 is a hypothetical reading value, which would represent here

one-half of full-scale, or 5 volts at the A/D input. The s9 record again provides the s1

record count.

In almost all of the above records, an xx is shown to signify the checksum byte. It is

computed by summing the binary bytes (not the ASCII character codes) beginning with

the record length byte and ending with the last data byte, and one’s complementing the

result to form the byte which is then ASCII-encoded. (As an example, the checksum for

the s9 record above is FB.) Notice that the receiver when checking for checksum errors

merely has to sum all the bytes mentioned above plus the received checksum byte. If the

result is FF, the checksum is correct.

Serial Server Oct 17, 1989 page 3

An example of a setting command might be to set channel 7 in system 4 to one volt. The

setting command would look like this:

s0 05 0000 0056 xx<CR>
s1 0B 0000 3001 01 02 0407 0CCC xx<CR>
s9 03 0001 xx<CR>

The 0056 value in the s0 record is the arbitrary request-id. The s1 record shows a

3001, which signifies a setting command, with an ident length of one word. The 01 byte

is the setting listype #, and the 02 means we are sending two bytes of data. The 0407, of

course, represents the channel ident (short form) specifying channel 7 in system 4. The

data value is 0CCC, which is one-tenth of full scale, or 1 volt. The s9 record is as before.

Serial Server Application

Here is the application page format of the Serial Server as displayed on the small

consoles of the VME systems:

S S E R I A L S E R V E R 0 1 / 3 1 / 8 7 1 3 3 2
I N P U T S Y S : 2 # R E C O R D S = 2 1
* A C T I V E # E R R S = 0
 L R E Q S N B A N S W E R S N B E
* 1 1 2 3 6 1 2 3 0 1 6
 2 1 1 4 4 1 3 0 8
 3
 4
 5
 6

S 0 0 5 0 0 0 0 0 0 0 3 x x
S 1 0 D 0 0 0 0 2 0 0 2 0 0 0 1 2 0 0 1 0 0 0 2 0 7 0 0 x x ⇒ data request
S 9 0 3 0 0 0 1 F B
S 1 0 9 0 0 0 0 0 0 0 2 0 0 0 0 5 6 7 8 x x ⇒ response

(This sample is purely illustrative and does not represent completely consistent example

data values.)

Upon entry to the page, the second line indicates *ACTIVE. To change the node whose

serial port is used for the serial server, enter the system number of the station which is

attached to the serial port (if changed), and with the cursor on the 2nd or 3rd line, press

the interrupt button. The second line will indicate *ACTIVE as above and will remain so

until one leaves the page, which will terminate operation of the server. The rest of the

page merely shows diagnostics of the server operation.

The number of records received from the user system and the number of error records

detected is shown. The table shows diagnostic values for each of the six possible active

requests which can be handled by the server. The * before the request number indicates

that the request is currently active and collecting and delivering answers. The second

Serial Server Oct 17, 1989 page 4
field shows the number of separate request commands received using the given list

number. The next field is the number of bytes (not ASCII characters) comprising the

request itself. The next field counts the answer blocks returned, and the next one is the

number of bytes in the returned answers. The last field shows any error status of the

data collection system.

The last lines display a snapshot of the latest request that was received. The first 3 show

the header record, the first data record, and the terminating record of the request. The

last record shows the first data record of the most recent answer response, which will

continue to update until a new request is received, when these 4 lines will change to give

diagnostics for that request.

Baud Rate Timing

To get an idea of what the baud rate timing limitation is, assume that 9600 baud is

used, and we request the single word of data as described in the first example. The

number of ASCII characters is the answer response is 52, assuming that <CR> represents

both a carriage return and a linefeed character. At about 1 ms per byte, this amounts to

52 ms of serial time—quite busy at a 15 Hz rate but rather comfortable at 1 Hz. Further,

if we requested a set of 20 readings—again originating from any stations in the

network—the time would be about 140 ms, assuming that the response block contained

two s1 records. And if we requested 100 words, it would require about 500 ms. Of

course, operation at 19.2K baud would halve these figures. Therefore, we have that the

serial time for n data words=

(48+4.6n) ms @ 9600 baud

(24+2.3n) ms @ 19.2K baud

Settings Log Implementation
Device setting activity

Thu, Sep 8, 1994

Due to the open access available in the local station/IRM system, it is useful to build a log of recent
setting actions as another diagnostic tool for analyzing system behavior.

A data stream approach has been used to implement a local settings log. The advantage to this
approach is the support already built in for data stream access. For some time, a data stream (#0)
has been defined to hold recent network frame activity. A host, wishing to monitor recent network
frame activity, uses a periodic request for the data stream contents, processing each new entry it
receives. Multiple hosts can monitor the queue without interference—a feature of data streams.

The settings log, using data stream #1, is designed to work in a similar way. The network frame
diagnostic page application called NETF was used as a start to build a page application for viewing
the setting log data stream contents. The information recorded is the node# of the node issuing the
setting message from the network, the listype#, #bytes of setting data, the channel#, the data value,
and the time-of-day the setting was successfully performed, organized as follows:

(put picture #1 here)

Settings log for Acnet
In the Acnet system, it is desired to have a log of setting activities directed to Acnet devices.

In case of some problem with the accelerator, this Acnet settings log can be a useful diagnostic tool
for helping to determine the cause of the problem. Vax console applications have been logging
settings they originate via the library routine that provides Acnet setting support for user application
programs. Other sources of setting activities have been included in this scheme over time. Since
local stations support a small screen display program that includes many attributes of the usual
parameter page, and since Linac technicians do use this tool in working with Linac hardware, it is
important to also bring such applications into the Acnet settings log scheme, referred to as
“settings accountability.”

The data stream described above houses entries that describe settings performed at the target front
end level, as opposed to settings initiated at a console level. To fit into the Acnet scheme, it is
necessary to record settings that are initiated by relevant applications that run in the local
station/IRMs. This is a very different type of settings log than that described above. For this
reason, code has been added to the local station’s version of both the parameter and analog
descriptor pages to record a special entry in the same data stream. This special entry includes the
device name and property mask. By sharing the same data stream, we can get space for the name
and property mask by eliminating the time field, which is not used in the Acnet scheme anyway.
The adjusted record format is as follows:

(put picture #2 here)

Settings Log Implementation p. 2

The Key byte has a value that distinguishes this record format from that used for local setting
activities, in which this byte of the date/time field would be a value in the range $00–$14, denoting
the BCD 15Hz cycle counter.

With these special entries placed into the data stream, a local application has been written that
monitors the contents of the data stream for these special entries and builds device setting
accountability records for Acnet, delivering them according to the specified protocol for that
purpose, designed and implemented by Kevin Cahill. See the document Settings Log LA for more
details on this local application.

Acnet device names are 8 characters in length, such as L:GR2MID for the mid-tank gradient reading
for RF system #2. The local stations use only the last 6 characters in their device names. The two-
character prefix is supplied by a parameter to the local application running in that station. To cover
the case of a setting that targets a device with a different prefix that is normal for the station running
the application, the settings log server, upon finding no device entry in the Acnet database,
performs a search for a device that matches the last 6 characters to correct the record.

Settings Log LA
Settings report for Acnet

Wed, Sep 7, 1994

Introduction
This document describes a local application that acts as an interface between

the settings log data stream and the Settings Log Server implemented in Acnet via a
task running on node cfss.fnal.gov that accepts a special protocol via a UDP port#
used for that purpose. Setting records of a special format are written into this data
stream from page application that run in a local station/IRM.

LA parameters
Example parameters as shown on Page E for the SLOG LA are as follows:

ENABLE B<00C4> SLOG ENABLE Enable Bit#

DB PREFX <4C3A> ‘L:’

IPADR HI <83E1> cfss.fnal.gov IP address

IPADR LO <797A> 131.225.121.122

RPT DLY <000A> 10 seconds report delay

REM DLY <0258> 600 seconds removal delay

LISTNUM <000C> list# for data stream data request

The DB PREFX parameter is a two-character ascii prefix to all 6-character device
names for preparing the settings report message that must include the 8-character
device names used in Acnet. For example, the Linac device name prefix is “L:”. Para
meters IPADR HI and IPADR LO specify the IP address for node cfss.fnal.gov. This
node houses the settings log server to which all settings reports are sent for logging.
The RPT DLY parameter is the “report delay” in seconds. It specifies the delay after a
setting is made before a report will be sent. Its purpose is to allow a chance for the
setting activity of other devices to be queued for inclusion in a single report message.
The REM DLY parameter is the “removal delay” in seconds, after which time the queued
entry is removed. During this time, additional settings of the same property made to
the same device will not be re-reported. Its purpose is to reduce network traffic
resulting from “knobbing” an analog device. The LISTNUM parameter is used for the
internal data request that monitors the contents of the settings log data stream.

Settings reporting
Upon initialization, the SLOG LA allocates a settings queue into which setting

log activity that relate to Acnet device names are queued for eventual inclusion in
settings log reports. When a setting is observed by the LA in monitoring the records in
the settings log data stream, its listype# is checked for those of interest to Acnet.
This table lists these listype#s:

Analog setting property
1 setting

Settings Log LA p. 2

7 relative “knob” setting
39 delta setting
41 engineering units setting
44 engineering units delta setting

Basic control property
22 digital control via Chan

Analog alarm block
2 nominal value
3 tolerance value
4 alarm flags w/o $4000 bit
42 engineering units nominal
43 engineering units tolerance
57 D0 alarm parameters

Digital alarm block
2 nominal value
3 mask
4 alarm flags w/ $4000 bit

A settings log queue entry is as follows:

RECORD

dName: PACKED ARRAY[1..6] OF Char; { device name }

sMask: Byte; { set properties mask }

rMask: Byte; { reported properties mask }

remov: Integer; { time out until entry removed from queue }

nRprt: Integer; { number of reports }

nSets: Longint; { number of settings to this device }

END;

The setting records monitored are only those that are sent from an application such
as the parameter page or the analog descriptor page, as only such records include a
device name. Assuming that the queue is empty, and a setting of one of the above
listypes is detected, then get the analog name from the channel descriptor. If it is
valid, then build a new entry in the queue. Set a bit in the sMask field according to the
setting property used. Set the rMask field to zero, as no properties have yet been
reported. Set the remov field to the REM DLY parameter. Set the global report delay
timer rDTimer to the RPT DLY parameter.

If a setting is encountered for a device whose entry is already in the queue, set the
appropriate bit in the sMask field, then check whether sMask = rMask. If they are equal,
then this property has already been reported to cfss in the last removal delay period,

Settings Log LA p. 3

so this one can be ignored. If they are not equal, and the rDTimer is zero, then set it to
the RPT DLY parameter to insure prompt reporting of the new-property setting.

Every second, decrement the rDTimer, if nonzero. When zero is reached, review all
queue entries and build a report message that includes all unreported properties of all
devices in the queue.

Every second, also decrement the remov field in each entry. If it reaches zero, and
rMask = sMask, all properties have been reported, so remove the entry from the queue.
If it reaches zero, and rMask <> sMask, then some properties for this device have not
yet been reported, so reset the remov field to twice the RPT DLY parameter. The
rDTimer should already be active in this case. This extra time should give a chance for
the unreported properties to be reported before the entry is removed.

When issuing a report message, the LA uses the acknowledgment typecode option for
the cfss-based server. This causes the server to return an acknowledgment, which is
used to set the rMask bits according to the mask that was reported. If there is no
acknowledgment received within a second, then re-issue the report up to two times
before giving up.

Device name prefix
The prefix used for all Linac devices is “L:”. Devices at the MRRF test station

are “Z:”. From the local station application point-of-view, the correct prefix cannot be
known. So, for all reports issued by a given station, a parameter of the LA is used as a
prefix. In cases where a target device is in another node whose devices use a different
prefix, the report will indicate the wrong device name. For a device with a name which
the setting log server cannot find in the Acnet database, the server will perform a
search throughout the database looking for a match on the last 6 characters of the
device name in order to complete the setting log record.

Station identification
Each station has a 16-character text title that usually shows where it is

located. For example, node 0508 has the title “LINAC SUN ROOM “. In the settings log
protocol, there is an 80-character owner field for each report message. Besides the
node#, the node’s title is included, normally identifying the local station’s location.

TFTP Implementation
Trivial File Transfer Protocol Server

Tue, May 17, 1994

This note describes the support for the TFTP (Trivial File Transfer Protocol) for the local
stations. Local stations do not have mass storage, but they have non-volatile memory
that is used for the storage of local and page applications. It is therefore useful to
consider this UDP-based standard protocol as a way to distribute application programs
to the local stations. A motivation for doing this, rather than the present way of
downloading new programs via the serial port, is that it makes it easier to access files
from host machines, as modern hosts support this standard protocol. Besides, it’s faster.

There are two sides to the support needed: client and server. The client side, if imple
mented for the local station, would be a page application. Its implementation on a
Macintosh, as recently done by Bob Peters, is an MPW tool. The client allows a user to
specify a program name and a target IP address. For named programs, the name is an 8-
character string, such as LOOPGRAD, that gives both the 4-character type name as well as
the 4-character program name of that type. The client initiates either a read or a write
transfer. The server side accepts the read/write transfer that is initiated from a client. In
addition, support is included for access to the system code of a local station, or more
generally, for access to an arbitrary block of memory, thus providing a kind of cheap
save/restore facility.

Client logic
A read transfer copies a named program, say, from the target IP address to the

initiating node, whereas a write transfer copies a named program from the initiating
node to a target IP address. Blocks of 512 bytes are sent, receiving an acknowledgment
for each block, until less than 512 bytes remain, when 0–511 are sent in the final block.

For a write transfer, the size of the file is known locally, so it is easy to source the file to
the target IP address. Blocks are sent 512 bytes at a time, until the final one that is from
0–511 bytes in length tells the receiver (server) that it is the last. Each block is acknow
ledged by the server. If no acknowledgment is received, then the block is resent. Check
sums for named programs are handled by the server, as the protocol does not support
them. Acknowledgments are considered enough to make the transfer itself reliable.

Server logic
The server is a local application that supports both read and write requests. A

read request received by the server means that the server should transmit the program
to the client. Again, the server has an easy time sourcing such requests, since the size of
the program is known locally. If no acknowledgment is received, the server re-transmits
the last block sent. After the final block is sent, the server activity may linger regarding
that transfer to allow for the fact that the acknowledgment might not be received for the
last block. Only after the acknowledgment has been received, or the server times out the

TFTP Implementation Mon, Oct 4, 1993 p. 2

transfer, should the server “close the connection.”

A write request received by the server means that a program is being copied to the
server node. This means that the transferred file must be read into temporary memory
at first. At the conclusion of the transfer, the size is known, so the appropriate settings
can be made to build the resulting program file into the non-volatile memory. The
solution to this problem is to use dynamic memory to allocate each received block of up
to 512 bytes. When the last block has been received, settings can be made from each
allocated block of data and the block freed.

Memory access, System code “file”
A filename of the form “MWxxxxxxxx.ssssss” can be used to access memory

data. The xxxxxxxx is the starting address and ssssss is the number of bytes of mem
ory to copy. MW accesses the memory as words, MB as bytes, and ML as longwords. The
specified address can be less than eight hexadecimal digits, and the size can be less than
the six digits shown. The special name “SYSTEM” can be used to access the system code
“file” as memory words. This name can be installed in 162bug’s network boot para
meters for use with the automatic network boot procedure following system reset.

Uses
Besides booting the system code via 162bug, named program access may be used

to build an archive of such programs on a workstation’s disk. The memory access can
allow save/restore of blocks of non-volatile memory. The main use for the write sup
port in the server is to allow sending system updates to a development target node
during program development and debugging. The usual download page can be used to
disseminate this code to other local stations, individually or via multicast addressing.
Note that time-stamping of named programs is done by the server upon reception, so if
a new version is only targeted to a single test node, and then disseminated from there to
other nodes, the time-stamp can serve as a “version date.”

Performance
The 162bug can accomplish the network boot function of its startup operation in

about 2 seconds, a small part of the total of approximately 20 seconds required. The
Macintosh client can transfer the system code in about 5 seconds to the TFTP server
local application called LOOPTFTP. As a replacement for use of a serial port to download
a new version of the system code, even at 19200 baud in 4 minutes, it’s great. In
addition, the S-record text file does not have to be generated. For named programs, the
time is also much improved, and the S-record file generation is no longer needed.

TFTP Implementation Mon, Oct 4, 1993 p. 3

Data request “filename” option (not implemented)
Consider support of a general data request protocol layered on top of TFTP. To

keep the filename short, use only single listype/single ident requests. Also, to simplify
the problem, consider only one-shot requests. The filename might have the following
format: LTxx-xxxx-xxxx.ssss. The xx fields would specify the listype, the source
node, and the ident in hex. The ssss could specify the requested number of bytes. (The
fields could have a different number of hex digits than shown here.) When such a
filename is received, the server would make a data request. When a reply is received, it
would return the data. In case the number of bytes requested is more than 512 bytes, a
temporary array will be needed to hold the data. Therefore, a limit of one such active
request could be supported at one time. Note that a request for less than 512 bytes of
data will result in a single reply datagram that will be acknowledged exactly once. Since
a host will write a file every time such a response is received, this may not work at a
high rate. But at least it can capture data using only a standard protocol.

Vacuum Units Conversion
Local application
Mon, Sep 20, 1993

Ion pump power supply currents are used to measure vacuum in the cavities of the
Linac upgrade accelerator modules. Vacuum readings in Torr are non-linear with
respect to the readings of the ion pump power supply currents. This note describes a
simple implementation for support of the non-linear conversion, so that hosts can scale
the vacuum readings linearly.

The format of the parameters to specify for this units conversion is as follows:

 E LOC APPL PARAMS 09/20/93 2129
 NODE<0627> NTRY<12>
 NAME=VACT CNTR=0520
 TITL"VACUUM TORR CONVERSION "
 SVAR=00035B22
 ENABLE B<00B2> VACT-2 ENABLE
 FORMULA1 <0002>
 INPUT1 C<01C2> V1VPAB V
 OUTPUT1 C<0362> V1VTAB -9T
 NCHANS1 <0006>
 FORMULA2 <0002>
 INPUT2 C<01D0> V4VPAB V
 OUTPUT2 C<0368> V4VTAB -9T
 NCHANS2 <0008>
 <0000>

Up to two conversion sets can be specified for each instance of this local application,
called VACT. Each specification gives the formula index#, the initial input channel#, the
initial output channel#, and the number of sequential channels to be so converted. The
output channels are dummy channels whose 16-bit reading words are updated to reflect
the results of the calculations. The scale factors for these channels are chosen to suitably
fit the expected range of the result with the needed resolution. Since vacuum pressure
tends to vary over a wide range, a compromise may need to be made.

In the initial implementation, the scale factors of the dummy channels used to hold the
linearized readings are fs=3276.8 and off=3276.8. This gives a range of 0–6553.6 in units
of 10–9 Torr, or a maximum value of 6.5x10–6 Torr. The least bit resolution in the 16-bit
word is 10–10 Torr.

Vacuum Units Conversion Mon, Sep 20, 1993 p. 2

The formulas used to fit the calibration data for the ion pump power supplies are as
follows, where v is the input reading in volts:

Formula index# Formula Used for:

1 If v >= cThr then one 230 l/sec ion pump

vacuum:= s*Exp(c10 + v*c11);

If v < cThr then

vacuum:= s*Exp(c20 + v*(c21 + v*c22));

2 If v >= dThr then two 230 l/sec ion pumps

vacuum:= s*Exp(d10 + v*d11);

If v < dThr then

vacuum:= s*Exp(d20 + v*(d21 + v*d22));

3 30 l/sec ion pump

vacuum:= s*Exp(t10 + v*t11) + Exp(t20 + v*t21);

Units of vacuum are 10–9 Torr, so s=1.0E9.
Coefficients used initially in the program are as follows:

cThr= 3.1; c10=–10.568; c11=–1.429; c20=10.972; c21=–14.797; c22=2.070;

dThr= 3.2; d10=–11.313; d11=–1.405; d20=–9.432; d21=–0.118; d22= 0.577;

t11= –1.535; t10= 5.09*t11; t21= –38.4; t20= –2.38*t21;

Of course, additional formula indexes can be defined using more constants by changing
the local application source code.

In the initial implementation, readings are updated at 15 Hz. For 16 channels of
conversion of 230 l/sec ion pumps, about 2.5 ms are required for the 68020-based local
stations. Since these are vacuum readings, a more leisurely update rate could be
adopted to save time. Also, since the vacuum signals from node 627 are also wired to
the individual klystron stations in nodes 620–626, each station could run its own copy of
VACT to spread the computing load.

The source code is 250 lines of Pascal, executing in 7K bytes.

	Accelerating Module Conditioning
	ACNAUX Functions
	Alarm-based Signals
	Beam Summing
	DAC0 and DAC1 Control
	Data Capture Logic
	Delayed Reset After Trip
	DirectNET PLC Access
	Domain Name Server Access
	HUMBUG for Local Stations
	Klystron RF Gradient Regulation
	Local Applications Table
	Local Control Box
	Local Station Additions for Acnet
	Network Frame Monitor
	Network Time Protocol Client
	NonLinear Units Conversion
	Resistor-Temperature Conversion
	RET/SETDAT Test Page
	Serial Server
	Settings Log Implementation
	Settings Log LA
	TFTP Implementation
	Vacuum Units Conversion

